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ABSTRACT Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and

although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively

impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional

distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of

stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can

reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress

negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws.

Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this

review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and

introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent

seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating

reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively

impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling. (Endocrine Reviews 38: 432 – 467, 2017)

I nfertility, defined as the inability to achieve a vi-
able pregnancy after  months of unprotected

intercourse ( months if the woman is over age ),
affects a remarkable one in four couples worldwide (,
). Female and male factors both contribute to in-
fertility, with % to % attributable to male factors,
such as low sperm count, poor sperm quality, hypo-
gonadism, and other abnormalities. Physiological
causes of female infertility include ovulation disorders
and tubal damage (~%), as well as % to % of all
cases remaining unexplained (–). Recent data,
particularly from animal models (including non-
human primates) suggest psychological stress may be
a major contributor to both male and female infertility
(–). Thus, stress can compromise every aspect of
fertility, including libido, sperm quality, ovulatory

capacity, and implantation (–) (see Fig. ). Indeed,
stress can be so detrimental to fertility that in at least
one species, it is used as a deliberate strategy to
suppress fecundity in competitors ().

Although the link between stress and reproductive
dysfunction has been well-established and extensively
investigated in nonhuman animals, where additional
variables can be tightly controlled, the question of
whether stress directly impedes fertility in humans
remains difficult to conclusively examine (–).
Psychological stress experienced by female or male
partners of infertile couples has been associated with
lower conception rates in at least some cases (–).
However, there have been a number of methodo-
logical challenges and conflicting findings facing
research in the area. These include the lack of
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prospective longitudinal studies on the general pop-
ulation (), the use of nonstandardized measures of
stress, and the fact that the majority of human studies
have been conducted on couples attending fertility
clinics (, ), with, likely, underlying physical and/or
hormonal causes of infertility. There is also the im-
portant consideration that stress is a normal facet of
life, thereby making nonstressed control groups very
difficult to source. Stress is usually dealt with by an
appropriate and regulated neuroendocrine response,
but although psychological stress affects us all at some
point, individuals differ in the impact this has on
their physiology, including fertility. These individual
differences may explain why some studies have
demonstrated substantial reproductive implications of
psychological distress (, , , , –), whereas
others have found small effect sizes or no association
(–). It is likely that individuals experiencing ex-
treme or long-term stress or those more vulnerable to
its effects may be particularly vulnerable to fertility
consequences.

Infertility itself can be highly stressful. Many of
those who struggle with infertility seek help from
assisted reproductive technology treatments. These
treatments, including in vitro fertilization, can involve
invasive techniques that place an additional burden of
stress on the couple in addition to the stress associated
with an inability to conceive (). The effects of stress
may therefore be particularly detrimental for couples
undergoing assisted reproductive technology, leading
in some couples to more treatment cycles to conceive
(, –), resulting in discontinuation of treatment
before achieving pregnancy (–), and potentially
contributing to the low overall success rates ().
Similarly, pre-existing psychological conditions, such
as anxiety, depression, and high levels of distress, can
have a negative effect on assisted reproductive tech-
nology outcomes (, , –) [but see (–)]. For
instance, Smeenk et al. () show anxiety and de-
pression were significantly negatively correlated with
pregnancy outcome in a multicenter prospective study
in . The same group was not able to replicate this
finding in a separate study in  (). However,
patients who are prone to anxiety, depression, or high
stress levels may particularly benefit from psychosocial
support during the treatments.

Some human evidence suggests intervention to
reduce stress may improve the chances of successful
pregnancy. A meta-analysis of  studies reviewing
the efficacy of psychological interventions for infertile
patients, from which  studies reported pregnancy
outcomes, shows a significant positive impact of

Figure 1. Stress influences reproductive function at all levels. Stress can interfere with reproductive
function at all levels of the reproductive axis. It can suppress libido, reward, and mating behavior at
the level of the brain, particularly the ventral tegmental area. It interferes with the hypothalamic
GnRH pulse generator and LH and FSH release from the anterior pituitary. It suppresses oocyte
maturation, ovulation at the level of the gonads, as well as increasing the likelihood of ovarian cysts
and affecting both ovarian and testicular steroidogenesis. Stress is also detrimental to pregnancy
outcomes postconception, reducing the likelihood of successful blastocyst implantation. Adapted
from Servier Medical Art under Creative Commons CC-BY license.

ESSENTIAL POINTS

· Infertility affects a remarkable one in four couples worldwide

· Psychological stress is a major contributor to male and female infertility, at least for some individuals

· For those individuals who are affected by life stress to a greater extent than others, understanding the underlying
mechanisms and the reasons for their increased susceptibility is essential

· We propose that ghrelin is a compelling link between stress and infertility that may partially explain the individual
differences in the way stress affects fertility
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interventions, including counseling, cognitive-behavioral
therapy, mind or body-oriented relaxation, educa-
tion, psychodynamic or psychoanalytic therapy on
pregnancy rates, despite these interventions having
no measurable effect on mental health. These im-
proved pregnancy success rates were only evident
for couples not receiving assisted reproductive
technology treatments (), highlighting that many
factors additional to stress contribute to infertility.
Another meta-analysis of  studies has also in-
dicated a positive effect of psychotherapy on
conception. In this analysis, % of subjects in the
intervention group reported pregnancy by study
completion, compared with % of controls, with
similar rates of pregnancy achieved in patients
receiving assisted reproductive technology treat-
ments and those who were not in specific medical
care ().

As a consequence of these studies, attention is
given to stress reduction management in individuals
and couples undergoing fertility treatments. The Australian
Assisted Reproductive Treatment Act () stipulates
a mandatory pretreatment counseling session that
includes a discussion of areas of potential stress and
strategies for managing these (). Similar guidelines
are implemented in other countries (). We should

note that other studies have shown that short-term
attempts to reduce stress levels may have limited or no
effect on pregnancy outcomes (, , ), highlighting
the complexity and multifaceted origins of infertility in
humans. It will be useful to see large-scale long-term
stress intervention studies in infertile humans with
accompanying measures of stress perception and
circulating stress hormones.

Given the complexity of the interaction between the
stress and reproductive axes, links between stress, stress-
reduction approaches, and successful conception in
humans are inconsistent. Likewise, attempts to isolate
single causal links between stress and infertility have not
yet been successful. However, stress management has
important potential to improve reproductive success
rates if we can identify the correct strategies for those
people most likely to benefit. It is therefore essential that
we begin to identify why fertility may be markedly
affected by stress in some individuals, and less so in
others. In this review, we discuss the current literature in
the field of stress-induced reproductive dysfunction and
the multifaceted nature of this interaction, based on
nonhuman animal models and human studies. Here we
will particularly focus on an important gut hormone,
ghrelin, as a compelling link between stress and
infertility.

Stress and the Hypothalamic-Pituitary-
Adrenal Axis

“Stress” itself has been a controversial concept since its
first description in physiology by Cannon and Selye
early last century (–). However, a stressor (the
stimulus) can broadly be considered an intense,
nonroutine challenge to homeostasis resulting in
a nonspecific response that includes general activation
of the hypothalamic-pituitary-adrenal (HPA) axis and
sympathomedullary systems. Each stressor can also
activate a more specific signature response. Here we
will refer to “stress” as the stimulus and “the stress
response” as the body’s reaction to the stimulus. Al-
though there are myriad types of stress, they can be
loosely categorized into “physical” and “psychological”
stress based on the immediacy of the impact on the
body and the endocrine and neuronal responses they
elicit. Physical stressors (interoceptive, homeostatic,
systemic) are those involving an immediate distur-
bance of tissue integrity and a specific activation of the
central amygdala and rostral A and A brainstem
noradrenergic cells in addition to general HPA axis
and sympathomedullary activation. Psychological stress
(neurogenic, psychogenic, emotional) involves a threat
to tissue disturbance rather than a direct injury and
a specific medial amygdala and caudal A and A
brainstem noradrenergic pattern of neuronal activa-
tion (–).

Acutely, within seconds to minutes, both physical
and psychological stress generally activates the sym-
pathomedullary system leading to the release of
adrenaline and noradrenaline, which increase heart
rate, blood pressure, respiration, and blood glucose
levels to facilitate attention and action directed at
combatting the stress. Within minutes the HPA axis
is activated, with corticotropin-releasing hormone
(CRH)- and arginine vasopressin-expressing cells in
the medial parvocellular region of the paraventricular
nucleus of the hypothalamus stimulating the release
of CRH from axonal terminal boutons in the median
eminence, which, in turn, stimulates corticotrophs in
the anterior pituitary gland to release adrenocorti-
cotropic hormone (ACTH) into systemic circulation.
By approximately  to  minutes after the onset of
the stress (, ), ACTH is acting at the
melanocortin- receptors on the adrenal cortex to
stimulate the synthesis and release of glucocorticoids
into the circulation. Glucocorticoids remain elevated
for ~ to  minutes after the onset of an acute
stressor (, ) and have roles in immunosup-
pression, glucose uptake and mobilization, fat stor-
age, and memory consolidation, among others.
Glucocorticoids also negatively feed back onto glu-
cocorticoid and mineralocorticoid receptors, chiefly
in the hippocampus and hypothalamus, to inhibit
further activation of the paraventricular nucleus of
the hypothalamus (PVN) so suppressing ongoing
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activation of the HPA axis once the stressor has been
resolved (–) (see Fig. ).

The response to acute stress is typically a highly
adaptive phenomenon, enabling the individual to ap-
propriately combat the stressor and recover (–).
However, if a stressor becomes chronic, due to prolonged
infection or exposure to substantial life challenges, such
as infertility, negative complications can ensue. Chron-
ically elevated glucocorticoids can lead to a variety of
complications, including excess weight gain, memory
impairments, and mood disorders, and as we will discuss,
this also has consequences for fertility.

As outlined in the introduction, although much
controversy exists in human research examining the
effects of stress on fertility, causal relationships have
been demonstrated in animal models. Thus, chronic
unpredictable stress in mice has been shown to
impair oocyte developmental potential through
severe apoptosis and oxidative stress (–). In our
own work, we have seen that exposure to psycho-
logical stress has an inhibitory effect on copulatory
behavior and suppresses the hormonal surge during
mating in female rats (). We have also shown that
animals that are programmed to be hyperresponsive
to stress demonstrate impaired sexual development
and detrimental changes to their ovarian or testic-
ular gametogenesis (, ), indicating stress and the
HPA axis interact significantly with the reproductive
axes.

Stress and the Hypothalamic-Pituitary-
Gonadal Axis

Reproduction is an essential function for the per-
petuation of the species and, as such, is controlled by
a sophisticated regulatory network of neuroendocrine
signals that are originated and integrated by the
hypothalamic-pituitary-gonadal (HPG) axis. The HPG
hormonal cascade begins in the medial preoptic
area (mPOA) of the hypothalamus, with the release
of gonadotropin-releasing hormone (GnRH) from
GnRH neurons. This collection of neurons, known as
the GnRH pulse generator, sends axons to the median
eminence from where GnRH is released in a syn-
chronized pulsatile manner and is the central control
mechanism for the reproductive cycle (–). This
pulsatile GnRH release is driven by several specific
mechanisms, including calcium and cyclic adenosine
monophosphate signaling (), electrical activity of
GnRH neurons (), autocrine regulation of the
GnRH receptor (), coupling of the GnRH receptor
to G-related proteins (), expression of G protein-
coupled receptor  and its endogenous ligand,
kisspeptin (), as well as positive and negative reg-
ulation by gonadal steroids (). The GnRH peptide is
secreted from the nerve endings into the hypophyseal
portal system, to stimulate the synthesis and the release

of the gonadotropins, luteinizing hormone (LH) and
follicle-stimulating hormone (FSH), from the anterior
pituitary (). FSH and LH are released in pulses into
the blood stream to stimulate the gonadal production
of gametes and the release of sex steroids, including
estrogen, progesterone, and testosterone (). The
levels of each of the HPG axis hormones are regulated
by complex positive and negative feedback loops, and

Figure 2. The HPA axis. Upon encountering a stressor, medial
parvocellular CRH and arginine vasopressin (AVP) neurons of
the hypothalamus receive input from several brain regions,
including the amygdala, brainstem, and prefrontal cortex, and
stimulate CRH release into the median eminence. CRH acts on
the anterior pituitary through CRH receptor type 1 (CRH-R1),
leading to the release of ACTH into circulation, a peptide
hormone derived from pro-opiomelanocortin (POMC). ACTH
stimulates glucocorticoid release to regulate glucose and fat
utilization and storage, memory, immune function, and other
stress-coping strategies, as well as negatively feeding back on
glucocorticoid and mineralocorticoid receptors in the
hypothalamus and hippocampus to suppress further HPA axis
activation. Adapted from Servier Medical Art under Creative
Commons CC-BY license.
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are also influenced by other neuroendocrine signals
(see Fig. ). As such, the HPA and the HPG axes are
well known to coregulate one another both centrally
and peripherally, with the extent of stress (acute vs
chronic), species, sex, and individual differences in
resilience affecting the ability of stress to influence
reproduction (–) (see Fig. ). One of the major
structures affected by stress is the hypothalamic GnRH
pulse generator, with stress diminishing its ability to
stimulate pulsatile release of gonadotropins. This loss
of pulsatility may lead to hypothalamic amenorrhea
(), and can be accompanied by reproductive dys-
regulations associated with other targets along the
HPG axis.

The effects of stress on hypothalamic GnRH
neuronal signaling

The role of CRH in stress-induced suppression of
GnRH signaling
The inhibitory effects of stress are initiated by CRH-
mediated suppression of the GnRH pulse generator,
diminishing the subsequent pituitary release of go-
nadotropins in rats (), sheep (, ), nonhuman
primates (), and humans (). These inhibitory
effects of CRH can be, at least partially, reversed by
CRH antagonists as has been shown in rats (–)
and nonhuman primates in response to a mild psy-
chological and metabolic (), as well as an in-
flammatory stress (), although inconsistencies are
seen in the primate research, with other studies
demonstrating that CRH receptor antagonism para-
doxically increases cortisol release, inducing further
LH release suppression ().

The CRH family of neuropeptides integrates the
neuroendocrine stress responses in the brain through
two distinct receptor subtypes, CRH receptor type 
(CRH-R) and type  (CRH-R), with higher binding
affinity of CRH to CRH-R (). CRH-R is highly
expressed in the brain and pituitary and to a lesser
extent in peripheral tissues (, ). Although the
actions of CRH to drive HPA axis activation during
stress are primarily mediated by CRH-R (), stress-
induced suppression of the GnRH pulse generator is
mediated by both CRH-R and CRH-R (, , ).

The vulnerability of the GnRH pulse generator to
stress has been suggested to be influenced by CRH-
GnRH connectivity in the mPOA, a GnRH-rich area.
The existence of synaptic connectivity between CRH
and GnRH neurons () and expression of CRH-R
receptors in mouse GnRH neurons in this area ()
indicate the possibility of direct actions of CRH on the
mPOA GnRH system. In contrast, although the PVN
plays a central role in autonomic and neuroendocrine
regulation of stress responsiveness (), PVN CRH
neurons do not appear to directly coordinate stress-
induced reproductive dysfunction. Lesions of the PVN
are unable to block stress-induced suppression of
gonadotropin release (), and no direct connectivity
between PVN CRH and GnRH neurons has been
detected (). Furthermore, infusion of calcitonin
gene-related peptide, which is known for its role in
stress-induced suppression of the HPG axis (),
suppresses LH pulse frequency when infused directly
into the mPOA, but not into the PVN (). As we will
discuss in the Ghrelin Signaling in the Stress Response,
Reward, and Mood Disorders section, ghrelin can
regulate the expression of CRH in stress-sensitive areas
including hypothalamus () and ghrelin, adminis-
trated both centrally and peripherally, mediates its
anxiogenic effects via the PVN CRH neurons (,
). However, because the inhibitory effects of ghrelin
on central reproductive function have been shown in

Figure 3. The HPG axis. Hypothalamic mPOA kisspeptin (Kiss1)
neurons stimulate and gonadotropin inhibitory hormone
(GnIH) neurons inhibit GnRH pulsatile release into the median
eminence. GnRH release stimulates the release of gonadotropins
LH and FSH from the anterior pituitary. This in turn leads to the
release of ovarian steroids mainly estrogen and progesterone,
that can carry out both negative- and positive-feedback
actions depending on the stage of the ovarian cycle. In males,
gonadal release of testosterone produces inhibitory actions on
GnRH/gonadotropin secretion (negative feedback). Pituitary
gonadotropins also stimulate steroidogenesis. Adapted from
Servier Medical Art under Creative Commons CC-BY license.
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other regions, such as the mPOA (, ), it is
possible that ghrelin also acts via the activation of
CRH neurons in these areas to suppress LH
pulsatility.

Additional regulatory mechanisms may influence
stress-induced GnRH pulse frequency. Other major
stress-regulatory areas, such as the amygdala, partic-
ularly the medial and central nuclei, have been im-
plicated in stress-induced suppression of the GnRH
pulse generator (–), with ghrelin, at least in-
directly, also influencing these regions during stress
(, ).

The role of g-aminobutyric acid in stress-induced
suppression of GnRH signaling
In addition to CRH, the inhibitory effect of stress on
the GnRH pulse generator activity is likely to be
mediated via g-aminobutyric acid (GABA)-ergic
signaling. Most studies have reported inhibitory ef-
fects of GABA on GnRH/LH pulsatility (–),
with the inhibitory actions of GABA on GnRH
neurons emerging at the time of vaginal opening in the
mouse, demonstrating a switch from their postnatal
depolarizing profile (). These inhibitory effects of
GABA-ergic signaling have been proposed to be
mediated by GABAA receptor activation (, ,
). In female nonhuman primates, blockade of
GABAA receptor increases GnRH release and accel-
erates the onset of puberty (). In regards to the
effects of stress, GABA-ergic signaling is modulated by
central administration of CRH (), by different
stressors (, ), and by ghrelin (). GABAA and
GABAB receptors in the mPOA are differentially in-
volved in mediating the effects of stress on LH pul-
satility, and antagonism of both receptors has been
shown to block the CRH-induced inhibition of LH
release in rats (, ). At the level of the median
eminence GABA can act on the GnRH nerve ter-
minals, leading to disruption of estrous cyclicity in rats
().

Kisspeptin and stress-induced suppression of
GnRH signaling
Another key regulator of GnRH signaling that can be
influenced by stress and ghrelin is kisspeptin. Kiss-
peptin is a neuropeptide that regulates fertility by
conveying information on systemic levels of sex ste-
roids to GnRH neurons, and thus regulates both tonic
and pulsatile GnRH release, playing a critical role in
the onset of puberty (, –). The most abun-
dant populations of kisspeptin-expressing neurons are
found in the arcuate nucleus of the hypothalamus and
preoptic area, particularly the anteroventral periven-
tricular nucleus (, ). Kisspeptin neurons are also
located in the PVN, and project to limbic structures
(, ), which are involved in stress-induced
suppression of the GnRH pulse generator (,
). Different stress paradigms that have been shown

to suppress GnRH release also result in down-
regulation of hypothalamic expression of the kiss-
peptin gene (Kiss) and its receptor (Kissr) in the
mPOA and the arcuate nucleus (, ), sug-
gesting that kisspeptin may play a critical role in the
stress-induced suppression of GnRH pulsatility and
LH release. Similar to stress, ghrelin also has an
inhibitory effect on kisspeptin-mediated GnRH
pulsatility and LH release (, ), as we will
discuss in the Ghrelin’s Local and Systemic Role
in Hypothalamic-Pituitary Reproductive Control
section.

Figure 4. Intersection of HPA and HPG axes. CRH can directly inhibit the GnRH pulse generator
leading to suppression of pituitary gonadotropins (LH and FSH), in turn resulting in diminished
oocyte maturation and steroidogenesis. Glucocorticoids can act directly at the level of the pituitary
to suppress gonadotropin release, as well as to exert suppressive effects within the gonads. CRH
release from the paraventricular nucleus of the hypothalamus activates locus coeruleus (LC)
neurons increasing noradrenaline production. This stress-induced increase in sympathetic activity
can then increase sympathetic innervation of the ovary, contributing to the development of
ovarian cysts. Adapted from Servier Medical Art under Creative Commons CC-BY license.
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The role of gonadotropin-inhibitory hormone in
stress-induced suppression of GnRH signaling
A negative regulator of the HPG axis that has also been
implicated in stress-induced reduction of GnRH ac-
tivity is the gonadotropin-inhibitory hormone, also
known as RFamide-related peptide in rodents and
humans (). In rats, exposure to stress leads to hypo-
thalamic upregulation of RFamide-related peptide
expression, and this increase is associated with a sig-
nificant reduction in circulating LH (). Another
recent study has demonstrated that chronic stress-
induced reproductive dysfunction in rats is completely
resolved by targeted knockdown of hypothalamic
RFamide-related peptide- ().

The effects of ghrelin on the activity of RFamide-
related peptide-containing neurons have not yet been
fully characterized (). RFamide-related peptide
neurons do not express ghrelin receptors, suggesting
any effects of ghrelin are indirect or via a yet un-
identified receptor (). RFamide-related peptide
neurons, however, coexpress CRH-R and glucocor-
ticoid receptors (), and CRH increases RFamide-
related peptide receptor Gpr gene expression and
suppresses GnRH mRNA levels in GnRH cells in vitro
(), whereas adrenalectomy abolishes the effects of
stress on RFamide-related peptide/GnRH signaling
(). Gpr is also expressed by kisspeptin neurons
(), and RFamide-related peptide inhibits kisspeptin-
induced activation of GnRH neurons (). These
findings suggest that gonadotropin-inhibitory hormone
acts directly and indirectly on the GnRH network to
mediate the inhibitory effects of stress on reproduction.
It is also evident that due to the extreme complexity of
the neural networks involved in the control of re-
production, the multiple signaling mechanisms
reviewed previously work in conjunction to mediate
the effects of stress on fertility.

Stress and pituitary and gonadal function

Glucocorticoids and the regulation of
pituitary gonadotropins
Although stress-induced decreases in gonadotropin
release are primarily controlled centrally and are
influenced by changes to the activity of the hypo-
thalamic GnRH pulse generator, direct subtle changes
may also occur locally. Early studies, in several species
including humans, demonstrated that glucocorticoids
act directly on the pituitary to inhibit its respon-
siveness to GnRH and reduce the release of gonad-
otropins in vivo and in vitro (–). More recent
evidence suggests inhibition of the pituitary’s sensi-
tivity to GnRH may also be regulated directly at the
pituitary by ghrelin (, , ), as we will discuss
further in the Ghrelin’s Local and Systemic Role in
Hypothalamic-Pituitary Reproductive Control section.
The effects of glucocorticoids at the pituitary are
possibly divergent for LH and FSH, because in vitro

release of FSH is increased from rat pituitary cells
when treated with glucocorticoids, but LH production
is suppressed (). The potential for direct effects of
glucocorticoids on the pituitary are further supported
by the evidence that glucocorticoid receptors are
expressed by rat () and mouse () gonadotrophs,
and glucocorticoids can act directly upon the anterior
pituitary gonadotrophs to suppress GnRH-induced
LH subunit b gene expression (). Synthesis of
the b-subunit is the rate-limiting step in LH pro-
duction (). Consistent with a direct action of
glucocorticoids at the level of the pituitary, studies in
ovariectomized ewes have demonstrated that cortisol
treatment induces suppression of LH, and this sup-
pression occurs in the absence of a reduction in GnRH
pulsatility (), whereas GR antagonism reverses
cortisol- and psychosocial stress-induced suppression
in pituitary responsiveness to GnRH (, ).
Overall, these findings suggest that glucocorticoid-
induced suppression of pulsatile LH release may be
driven by a reduction of pituitary responsiveness to
GnRH. However, the full extent of glucocorticoid
(and ghrelin’s) role in compromising the GnRH-
driven FSH and LH surges may be poorly esti-
mated due to the technical difficulties in sampling
blood sufficiently frequently to obtain accurate surge
profiles, particularly in small animal models. Sheep,
nonhuman primate, and human studies will prove to
be particularly informative in this regard. Another
important pituitary hormone known to be influenced
by stress and ghrelin is prolactin, and we discuss its
role in mediating the effects of stress and ghrelin on
reproductive function in Ghrelin as a Regulator of the
HPG Axis section.

The effects of glucocorticoids on gonadal function
Exposure to stress is usually accompanied by decreased
gonadal steroid production (, ). This decreased
steroid production may be a result of a stress-induced
attenuation of the pituitary reproductive hormone
release affecting the gonadal output (–), as well
as by a direct effect of glucocorticoids and sympathetic
innervation on the gonadal activity (, ), as
discussed here and in the the Effects of Catechol-
amines on Gonadal Function section.

Several studies in humans have demonstrated that
increased levels of glucocorticoids due to an exposure
to stress can reduce the release of gonadal steroids,
with and without a concomitant reduction in plasma
LH levels (, –). Bereavement stress (), as
well as experiences of war (, ) have been as-
sociated with reduced quality of sperm. However,
these effects are likely to be related to the perceived
degree of stress. As such, there are mixed findings
regarding the impact of chronic mild stress, such as job
strain, on semen quality. Although some studies have
found no association between work-related stress and
semen quality or sex steroids (, , ), others
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found that higher job strain does lead to significant
impairment of sperm quality (, ) and decreased
levels of testosterone (). These discrepancies sug-
gest that although occupational stress may be detri-
mental to male fertility, different measures of job
strain such as effort-reward imbalance need to be
considered to determine whether work stress has
necessarily a negative impact on wellbeing ().
Particularly because job loss and unemployment are
also associated with poor sperm quality () and
lower testosterone (), these data suggest these effects
are likely to be related to increased anxiety and de-
pression, independently linked to poor fertility (, ).

The impact of stress on testosterone levels in adult
males may be influenced by exposure to early life
stress, and thus program increased vulnerability to the
effects of adult stress (). In the testis, glucocorti-
coids act directly on Leydig cells that express gluco-
corticoid receptors (). The access of glucocorticoids
to their receptors is controlled by the type  isoform of
b-hydroxysteroid dehydrogenase. In male gonads,
this enzyme is exclusively and abundantly expressed
in Leydig cells where it catalyses the oxidative in-
activation of glucocorticoids. However, in response to
severe stress, b-hydroxysteroid dehydrogenase is
saturated and excessive glucocorticoids may cause
rapid repression of testosterone production [reviewed
in ()]. Ghrelin has also been shown to modulate
testicular function both directly at the testicular level
and through its systemic administration, suppressing
Sertoli and Leydig cell proliferation (, ).

A direct effect of glucocorticoids on the ovary has also
been identified. Glucocorticoid receptors are expressed
in different cell types within the ovary (), and their
expression is maintained during follicular maturation,
ovulation, and pregnancy (). Similar to glucocorticoid
action in the testis, b-hydroxysteroid dehydrogenase
regulates glucocorticoid action within the ovary. In
cultured human granulosa-lutein cells, diminished
b-hydroxysteroid dehydrogenase activity has been
shown to mediate cortisol-induced inhibition of
ovarian steroidogenesis (). Ovarian steroidogen-
esis is also suppressed locally by ghrelin (), where
it inhibits the expression of other steroid pathway
enzymes, such as b-hydroxysteroid dehydrogenase,
b-hydroxysteroid dehydrogenase, and cytochrome
P aromatase ().

Glucocorticoids have also been implicated in oocyte
maturation along the ovulatory cycle and species spe-
cific effects have been noted. Glucocorticoids suppress
meiotic maturation in gilt oocytes (). In contrast, in
mouse oocytes, only supraphysiological levels of glu-
cocorticoids inhibit follicle differentiation and oocyte
maturation (). In ewes, inconsistent effects of cor-
tisol and dexamethasone on oocyte maturation have
been demonstrated, with no effect of these glucocor-
ticoids on the capacity of the oocytes to undergo fer-
tilization (). In humans, however, higher levels of

cortisol have been detected in the follicular fluid of
oocytes that were not fertilized than in the follicular
fluid of successfully fertilized oocytes (), and higher
ovarian b-hydroxysteroid dehydrogenase  activity
has been correlated with better fertilization rate ().

The effects of catecholamines on gonadal function
In addition to the local ovarian effects of glucocorti-
coids, catecholamines, and in particular noradrenaline,
have an important role in follicular maturation and
steroidogenesis (–). b-adrenergic receptors are
expressed by the theca-interna ovarian cells, and ac-
tivation of these receptors leads to increased androgen
production (). A stress-induced increase in sym-
pathetic activity, such as that induced by cold and
restraint stress, can increase sympathetic innervation
of the ovary, contributing to the development of
ovarian cysts in rodents (, ), and these effects
can be abolished by lesions to the noradrenergic
nucleus locus coeruleus (). Polycystic ovarian
morphology and excessive androgen levels are com-
mon features of polycystic ovarian syndrome (PCOS).
As we will discuss in the Role of Ghrelin Signaling in
PCOS section, dysregulation in ghrelin signaling has
also been implicated in the pathophysiology of PCOS.

Ghrelin and Its Receptors: Structure,
Distribution, and Function

Ghrelin is a gut-derived hormone that was originally
associated with feeding behavior and energy ho-
meostasis (, ). It has lately been found to have
important roles in such diverse biological functions as
motivation, memory, vascular function, and neuro-
protection after brain injury (–). Ghrelin is also
a key regulator of the endocrine response to stress
() and of reproduction (, , –).

Ghrelin is a -amino acid peptide (). It is
principally produced in the stomach as proghrelin
where it undergoes posttranslational octanoylation by
the enzyme ghrelin-O-acyltransferase (GOAT) to form
acylated ghrelin (AG) (, ). Ghrelin thus exists in
the circulation in at least two major bioactive forms:
AG and des-acylated ghrelin (DAG), the unacylated
form. There is some evidence that ghrelin is expressed
in tissues other than the gut, including pancreas
and kidney, pituitary, ovaries, and testes (–).
However, data from studies in mice with the ghrelin
reporter tagged to green fluorescent protein (, )
suggest that ghrelin in the brain is likely derived from
circulating ghrelin having passed through the blood-
brain barrier () rather than being specifically
synthesized in ghrelin-containing neurons ().

AG was first identified in  as the endogenous
ligand for the growth hormone secretagogue receptor
(GHSRa), through which it stimulates growth hormone
release (). GHSRa is expressed in numerous tissues
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throughout the body, including the ovaries and testes
(, , ) (see Table ). It is also expressed in brain
regions important in regulating the HPA and HPG axes,
and in regions directly involved in these axes, including
hypothalamus and pituitary (, , ). GHSRa is
a G protein-coupled receptor and activation by the
endogenous ligand stimulates a phospholipase C/protein
kinase C/inositol trisphosphate pathway that triggers
inositol trisphosphate-dependent calcium release from
intracellular stores. This intracellular calcium combines
with calcium entering the cell via voltage-gated L-type
calcium channels to stimulate the downstream response
(–). In addition to its ligand-dependent effects,
GHSRa has high constitutive activity, and can signal at
approximately % of its maximal capacity in the absence
of ghrelin, at least in vitro (). GHSRa is also able to
dimerize with other receptors, such as the dopamine
receptor subtype  to modulate dopamine signaling ()
and the melanocortin- receptor to modulate melano-
cortin signaling (, ).

Although AG’s interaction with GHSRa has been
well-characterized, the receptor for the more abun-
dant form of circulating ghrelin, DAG (), is
currently unknown. DAG does not act at the GHSR.
DAG is known to inhibit the effects of AG (), but
it also has important independent physiological

effects, including in stress (, ) and potentially
in fertility.

Ghrelin Signaling in the Stress Response,
Reward, and Mood Disorders

Ghrelin in stress and mood, evidence from
clinical studies
In a clinical setting, ghrelin is closely affected by stress,
mood, and stress-related disorders, such as anxiety and
depression. Women with high levels of interpersonal
stress have higher serum ghrelin levels than their less-
stressed counterparts (), and ghrelin is acutely
elevated after stress imposed in an experimental set-
ting (–), or even an anticipation of stress ().
Interestingly, AG is elevated by stress in direct cor-
respondence to the magnitude of stress, so that people
with greater glucocorticoid responses to stress have
also higher ghrelin levels (). Several findings sug-
gest ghrelin is involved in the stress response in this
context. For instance, exogenous ghrelin stimulates the
release of both ACTH and cortisol in humans
(–). A continuous infusion of AG over  hours
in female rhesus macaques also stimulates cortisol
release (, ), whereas a bolus injection in the

Table 1. Distribution of GHSR in Rat and Mouse Hypothalamus and Pituitary

Organ Abbreviation Rat Mouse

Hypothalamus

Anterior hypothalamic area AHA 2 +

Anteroventral periventricular nucleus AVPe + ++

Arcuate nucleus ARC ++++ ++++

Dorsomedial nucleus DMH + ++

Medial preoptic nucleus MPOA + 2

Paraventricular nucleus PVH + ++

Periventricular hypothalamic nucleus Pe 2 +

Retrochiasmatic area RCA + +

Suprachiasmatic nucleus SCh ++ +++

Ventromedial nucleus VMH ++ +

Pituitary gland

Anterior pituitary

Corticotrophs +++

Gonadotrophs +

Lactotrophs ++

Somatotrophs ++++

Posterior pituitary 2

Hypothalamic data are adapted
from (234). Pituitary data are
adapted from (235).
Hypothalamic and pituitary
GHSR expression has been
identified in rodents (234–236),
sheep (237), and human (238),
as well as nonmammalian
species including birds (239)
and fish (240, 241).
Symbols in this table are not
comparable between organs.
Abbreviations: 2, no
detectable expression; +,
minimal detectable expression;
++, some detectable
expression; +++, high
expression; ++++, very high
expression.
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same species has no such effect (). Studies by
Wilson and colleagues () further demonstrate that
although subordinate female monkeys chronically
exposed to social stress do not demonstrate differences
in circulating AG, they do have increased sensitivity to
the orexigenic effects of ghrelin, even in the fed state.
This increased sensitivity stimulates increased con-
sumption of a low caloric diet, when a choice between
high and low caloric diets is available. Interestingly,
dominant females have reduced consumption of
this diet in response to ghrelin. Furthermore, CRH
receptor antagonism over  days in subordinate and
dominant monkeys is efficient at reducing hyper-
cortisolism; however, it stimulates increased caloric
intake by subordinates and has anorectic effects in
dominant animals (); again illustrating individual
differences in response to stress.

Ghrelin-related dysregulation of the HPA axis can
lead to mood disorders, particularly if ghrelin is
chronically affected. Individuals with polymorphisms
in the gene for preproghrelin can be at increased risk of
panic () and major depressive disorders (), and
treatment-resistant depressive individuals have ele-
vated ghrelin compared with controls, and those who
do respond to treatment (). With respect to de-
pression, conflicting findings have been seen, which
reflect the complexity of ghrelin’s role. Several
studies have shown ghrelin is elevated in depression
(–), whereas others have shown no changes
(–). These discrepancies may be accounted for
by differences in body mass index or satiety status,
because elevated body mass index suppresses, and
fasting elevates, ghrelin (, ). Thus, Barim et al.
() found depressive patients have a tendency to
have less circulating ghrelin than controls, but body
mass index was also lower in this group, potentially
independently accounting for the findings. Degree or
manifestation of the illness may also play a role be-
cause at least one study has found differences in
circulating ghrelin depending upon whether the pa-
tients were treatment-resistant or -responsive ().

There is now some support for the idea that ele-
vated ghrelin in depression reflects a role for the
peptide in combatting or reducing the effects of this
disorder. Thus, treatment interventions that mitigate
depression can suppress ghrelin. For instance, elec-
troconvulsive therapy (, ), citalopram (),
mirtazapine (), and other antidepressants ()
reduce circulating ghrelin; albeit that maprotiline el-
evates it (). Furthermore, Kluge et al. () have
shown in a small clinical sample that acute ghrelin
administration has a tendency to improve depressive
symptoms in men, but not women, with major de-
pressive disorder. It also significantly improves sleep
quality in both men and women with depression-
related sleep disturbance (). Transient suppres-
sion of catecholamines, which reliably and reversibly
induces depressive symptoms, significantly reduces

circulating ghrelin in healthy people (), and a single
exposure to exogenous ghrelin led to elevated mood in
% of healthy people (three of nine) ().

Ghrelin in stress and mood, mechanistic detail
from animal models
Animal models have served to clarify some of the
conflicting findings of the human studies. In animal
models, as in humans, stress increases ghrelin. With
acute stress, including tail pinch and water avoidance,
circulating ghrelin and stomach ghrelin mRNA are
increased (–). With ongoing stress, including
chronic daily restraint, chronic unpredictable stress,
and chronic social defeat, the same pattern is seen
(–), but the increased ghrelin can persist. In
mice, increased ghrelin as a result of  days daily
social defeat was still evident at least month after the
last defeat session ().

Stress-induced ghrelin targets the HPA axis at
several levels of the axis, and in healthy individuals
under normal conditions probably facilitates an im-
mediate hormonal response that enables effective
coping with the cause of the stress (). GHSR is
negligibly expressed in mouse PVNCRH neurons, and
ghrelin thus indirectly activates these neurons to
stimulate ACTH release from the pituitary (, ,
). In ghrelin knockout (ghr2/2) mice, the PVN
c-Fos response to acute restraint is exacerbated
compared with wild-type controls, but glucocorticoid
release is reduced in the same animals. In the absence
of ghrelin, the adrenals are capable of responding
normally, because exogenous ACTH causes similar
glucocorticoid release in the ghr2/2 as in the wild-
type. The PVN is also capable of responding normally
without ghrelin, because mimicking glucocorticoid
release with dexamethasone causes similar activation
of this region in both groups (). GHSR is widely
expressed in the anterior pituitary (). It is also
coexpressed with ACTH in corticotropic cells (),
and exogenous ghrelin stimulates ACTH release in
vivo () and in vitro (). Thus, ghrelin likely fa-
cilitates HPA axis activation by directly stimulating
ACTH release from corticotrophs in the anterior
pituitary.

Although the PVN CRH cells are not directly
activated by ghrelin, the peptide does increase CRH
mRNA (, ) and does indirectly activate these
neurons (, ). Among several sites potentially
important in relaying stress signals to the PVN fol-
lowing ghrelin stimulation are the amygdala, centrally
projecting Edinger Westphal nucleus, locus coeruleus,
and the ventral tegmental area (). Dysregulation of
the amygdala is a hallmark of anxiety, depression, and
dysfunctional HPA axis responses to stress making it
a potentially important site for ghrelin’s activity under
stress conditions (). It is also a key upstream
regulator of the GnRH pulse generator (, ).
Ghrelin signaling via the amygdala is likely indirect or

“Ghrelin is important for
appropriate reproductive
function, including
development of the
reproductive axis.”
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inhibitory. Although the medial amygdala contains
abundant GHSR, projects directly to the PVN, and is
highly activated following psychological stress, very
few of the GHSR-expressing cells are those that ex-
press stress-induced c-Fos. Edinger Westphal nucleus
urocortin GHSR-containing cells are activated by
stress in the presence of ghrelin, and project to the
medial amygdala suggesting a possible route by which
ghrelin indirectly activates the PVN (). Ghrelin,
and fasting, both strongly activate amygdala activity, as
well as increasing CRHR mRNA in the region
(–). Intra-amygdala ghrelin injections can also
influence the symptoms of depression, although in one
study this only occurred in conjunction with calorie
restriction ().

The locus coeruleus also projects directly to the PVN,
and these projections are activated by stress to stimulate
PVN CRH neurons (). Intracerebroventricular
ghrelin binds to these locus coeruleus catechol-
aminergic neurons potentially influencing the HPA
axis via this pathway (). The increased sympa-
thetic activity may then increase sympathetic in-
nervation of the ovary, leading to the development of
ovarian cysts (, ), and contributing to the
PCOS phenotype (, ). Intracerebroventricular
ghrelin similarly increases neuronal activation in the
nucleus of the solitary tract, and catecholamine cells
from this region can directly activate the PVN and are
strongly implicated in regulating an appropriate
stress response (, , , ). The ventral teg-
mental area is another candidate region expressing
GHSR, responding to stress, and stimulating the
PVN. Activation of the ventral tegmental area may
therefore also mediate the effects of ghrelin on HPA
axis function. In addition, it has particular signifi-
cance in ghrelin’s role in the rewarding aspects of
reproductive function (, ).

Stress-induced ghrelin imbalance regulates brain
reward circuitry
As well as, and integrated with, an important role for
ghrelin in stress, ghrelin is a key player in responses to
motivating stimuli and controlling the feelings of
reward. This role has been particularly elucidated with
respect to the rewarding effects of food, but also
pertains to drugs of abuse and other pleasurable
stimuli, likely including sex (). Thus, conditioned
place preference for a food reward in the context of
chronic psychosocial stress is not evident in mice
lacking the GHSRa, suggesting ghrelin signaling is
essential for such reward behavior (). Similarly,
conditioned place preference for food reward under
basal conditions can be blocked with ghrelin antag-
onists (). Central ghrelin also increases the pref-
erence for highly palatable rewarding foods, including
fats and saccharin (, ). These ghrelin-induced
changes in food preference do not occur in the absence
of GHSR (). The idea that ghrelin itself drives

a feeling of reward comes from studies showing sa-
tiated mice develop a conditioned place preference to
ghrelin alone ().

To achieve this reward regulation, ghrelin interacts
with cortical and mesolimbic areas, including nucleus
accumbens, amygdala, and ventral tegmental area
(). GHSR is expressed on midbrain dopamine
neurons in the substantia nigra () and ventral
tegmental area (), regions important for motiva-
tional aspects of multiple behaviors, including sexual
behavior (). Activity of the dopamine system in
these regions is elicited by expectation of, or exposure
to, pleasurable stimuli, such as sexual experience ().
Ghrelin administration directly into the ventral teg-
mental area leads to elevated nucleus accumbens
dopamine levels () and increased feeding behavior
(, ). Ghrelin directly into the ventral tegmental
area also influences motivation to persevere at a task to
obtain a food reward. Thus, rats given ventral teg-
mental area ghrelin had an increase in operant lever
pressing and nose pokes to obtain sucrose compared
with controls (, ). Blocking ghrelin signaling
with a ghrelin antagonist suppresses operant perfor-
mance in calorie restricted rats (). These effects
seem to be particular to the ventral tegmental area
because ghrelin administered directly into the nucleus
accumbens has no similar effect ().

In addition to a role for ghrelin in food-related
reward, ghrelin signaling can also promote alcohol
consumption, and sensitization to other drugs of
abuse including cocaine, amphetamines, and nicotine
(–). Indeed, Kaur and Ryabinin () have
identified that ghrelin’s role in driving alcohol con-
sumption critically involves the Edinger Westphal
nucleus, with alcohol stimulating the Edinger West-
phal nucleus and ghrelin suppressing this effect, im-
plicating this region as a potential interface between
stress and reward processes that can be modulated by
ghrelin.

Whether ghrelin plays a specific role in rewarding
behavior in mating remains to be explicitly tested.
However, many of the mechanisms for such behavior
overlap with those for reward in food and drugs of
abuse. The mesolimbic dopamine pathway is clearly
strongly involved in all types of rewarding behavior,
including sexual attraction, sexual pleasure, and in-
terpersonal attachment (). Nucleus accumbens and
ventral tegmental area are both activated in association
with mating, and sexual experience can lead to
remodeling in these regions, with increases in the
number of dendrites and spines in the nucleus
accumbens in sexually experienced rats compared with
sexually näıve (–).

To date, few studies have directly examined
ghrelin’s role in the rewarding aspects of mating be-
havior. There is one study that has examined the
effects of acute ghrelin on mating, and this found
intraperitoneal ghrelin can suppress male ultrasonic
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calling to receptive females and increase the latency to
attack a rival male, evidence of reduced aggression, but
preference for female odor was retained (). These
findings are likely to reflect the interplay between
ghrelin’s role in reproductive function and in feeding,
with acute ghrelin preferentially stimulating feeding-
related behavior over mating. In direct assessment of
ghrelin’s rewarding role in mating, ghrelin acutely
administered peripherally or centrally into the ventral
tegmental area and other areas of the dopamine re-
ward system increases sexual motivation and behavior
in male mice. These studies have also shown that acute
peripheral or central pharmacological suppression of
GHSR or genetic deletion of the receptor reduces
sexual motivation and behavior in these animals (,
). However, persistent elevation of ghrelin induced
by chronic stress may have an opposing effect on
sexual motivation and behavior, similar to sexual
impairment under negative energy balance (),
typically associated with increased ghrelin. We should
note here that GHSR-, GOAT-, and ghrelin-knockout
mice breed normally under laboratory conditions
(Spencer, Sominsky, Andrews, unpublished observa-
tions, ). However, these conditions are necessarily
relatively stress-free and unchallenged. It is likely the
absence of an effective ghrelin system would affect
motivation to mate as well as other reproductive
factors under conditions of chronic stress. In this
regard, it will be essential to directly examine mating
behaviors, and other fertility factors, in the context
of stress in inducible knockouts that have not had
the opportunity to developmentally compensate for
ghrelin absence.

Ghrelin as a Regulator of the HPG Axis

Ghrelin’s local and systemic role in hypothalamic-
pituitary reproductive control
In addition to its role in regulating the stress response
and reward, ghrelin is important for appropriate re-
productive function, including development of the
reproductive axis. It regulates reproductive physiology
through its systemic release and local expression,
acting at all levels of the HPG axis (). The local and
systemic effects of ghrelin on the adult reproductive
system are complex. In regards to its hypothalamic-
pituitary reproductive action, AG has been shown
to have predominantly inhibitory effects in vivo.
Acute intracerebroventricular administration of AG in
ovariectomized adult rats suppresses LH pulse fre-
quency, but not the pulse amplitude, suggesting the
inhibitory effects of ghrelin on LH release are mediated
by its effects at the level of the hypothalamus (,
). In support of this, GnRH release by hypotha-
lamic explants from ovariectomized adult rats is
inhibited by AG (). Similar decreases in LH pulse
frequency, without concomitant differences in LH

pulse amplitude, have been detected in ovariectomized
rhesus monkeys subjected to chronic peripheral in-
fusion of AG. These suppressive effects of AG on LH
pulsatility are concomitant with an increase in cir-
culating cortisol levels (), and both of these effects
are prevented by CRH receptor antagonist treatment
(), demonstrating the role of ghrelin in the in-
teraction between the HPA and HPG axes. The in-
hibitory effects of AG on LH pulse frequency also
occur in ovariectomized estrogen-replaced fed rats,
after acute peripheral administration of AG, and these
effects are further exacerbated by overnight fasting
(). Acute AG inhibits LH release throughout the
estrous cycle in intact adult female rats (), intact
males, and gonadectomized male and female rats
prepuberty, with no changes in FSH release ().
These changes are not apparent in prepubertal intact
females (, ), indicating that ghrelin’s suppres-
sive effects on GnRH/LH release are reproductive
maturity-dependent in females, but potentially not in
males. Indeed, another study in male rats has dem-
onstrated that both acute and chronic administration
of AG or DAG, as well as an acute coadministration of
both peptides, inhibits LH release in prepubertal and
adult males, with a similar reduction of FSH in adults
(). The combined inhibitory effects of AG and
DAG on LH release that were demonstrated by this
group are contrary to the potential antagonistic effects
of DAG on the metabolic effects of AG (). In young
adult men, AG has also been shown to suppress LH
release, both its pulse frequency and amplitude ().
In women, repeated administration of AG suppresses
both LH and FSH (). Elevated ghrelin levels in
exercising women, and women with anorexia nervosa
that suffer from chronic energy deficiency, predict
menstrual disturbances and hypothalamic amenor-
rhea (–). Ghrelin-induced suppression of LH
release is similar to that induced by stress (–).
Because energy deficiency is a metabolic stress that
leads to an increase in glucocorticoids (), it is likely
that ghrelin and glucocorticoids together communi-
cate inhibitory information to the HPG axis [reviewed
in ()].

Ghrelin has also an inhibitory effect on kisspeptin-
stimulated LH release (). Acute administration of
AG, fasting, and their combination suppresses Kiss
mRNA expression in the mPOA (), possibly
contributing to the inhibitory effects of ghrelin on LH
release. However, despite the apparent central in-
hibitory effects of ghrelin on LH secretion and the
mPOA expression of kisspeptin gene, Smith et al. ()
found minimal to no coexpression of GHSR on
GnRH, kisspeptin, and tyrosine hydroxylase neurons
in the anteroventral periventricular nucleus, or
RFamide-related peptide neurons in the dorsomedial
hypothalamus, using the GHSR-enhanced green
fluorescent protein reporter mouse model. This study
demonstrated that over % of the GHSR-expressing
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cells in the anteroventral periventricular nucleus and
the periventricular nucleus express estrogen receptor-
a (ERa), suggesting that the central inhibitory effects
of ghrelin on LH pulsatility may be mediated by es-
trogen (). Another study has identified GHSR and
ERa coexpression in neurons in distinct hypothalamic
nuclei in female mice, including anteroventral peri-
ventricular nucleus, the ventrolateral subdivision of
the ventromedial nucleus of the hypothalamus, and
the arcuate nucleus. Notably, only in the arcuate
nucleus was this coexpression, as well as GHSRmRNA
expression, mediated by high estrogen levels. The
induction of GHSR mRNA expression in the arcuate
nucleus by estrogen treatment in ovariectomized mice
is specific to neurons expressing ERa and Kiss
mRNA. Furthermore, direct application of ghrelin
induces estrogen-dependent depolarization of arcuate
nucleus Kiss neurons (). Estrogen controls energy
balance and expenditure, with a reduction in estrogen
synthesis and its circulating levels leading to an in-
crease in body weight and adiposity, as is typically seen
in women who enter menopause [reviewed in ()].
Estrogen is also known to regulate stress sensitivity,
with reduction in endogenous estrogen enhancing
anxiety, and estrogen replacement producing anxio-
lytic effects at least in some animal models of ovari-
ectomy and in postmenopausal women (–). A
series of studies in subordinate female rhesus monkeys
demonstrate that chronic exposure to psychosocial
stress modulates physiological responses to estradiol,
inducing hypersensitivity to the negative feedback
effects of estrogen on LH secretion (), reduced
sensitivity to the anorectic effects of estrogen (),
and impaired anxiolytic effects of estradiol in the
context of sexual behavior, even at higher doses ().
These animals also exhibit heightened sensitivity to the
orexigenic effects of postprandial AG (). These
effects of chronic stress on the responses to estrogen
have been suggested to be at least partially explained
by an increase in estrogen-induced GABA-ergic tone
in the prefrontal cortex of subordinate females. This
social status difference between subordinate and
dominant females is reversed by CRH receptor an-
tagonism (). Studies examining the interactions
between estrogen and stress, however, have shown
contradictory findings in both animals (–) and
humans [reviewed in ()]. The different findings
reflect differences in behavioral tasks, differences in
endogenous and exogenous levels of estradiol and
length of exposure to stress. The individual differences
in responses to estradiol are particularly important to
consider in light of negligible support for beneficial
effects of estradiol on mood in postmenopausal
women in the Women’s Health Initiative studies (,
).

Estrogen-mediated regulation of the stress re-
sponses is likely to be mediated by both ERa and ERb
(), whereas the effects of estrogen on energy

balance are primarily mediated by ERa (). Kiss-
expressing neurons in the arcuate nucleus, a critical
region for food intake regulation, coexpress ERa and
play a pivotal role in the integration of energy balance
signaling and reproduction (). Although some
kisspeptin neurons in this region coexpress ERb, this
receptor does not play an important role in estrogen
feedback regulation of GnRH activity (). Never-
theless, the exact role that estrogen plays in mediating
the effects of ghrelin on Kiss neurons and hence
GnRH pulse generator remains to be established. It is
also important to note that there are species differences
in the expression of GHSR in brain areas involved in
the regulation of reproductive activity, such as mPOA,
because GHSR is expressed in this region in mice, but
probably not in rats (, ), suggesting indirect
mechanisms may be involved in the inhibitory effects
of AG on Kiss expression in this region in rats ().
These differences warrant further species-specific in-
vestigation into the central effects of ghrelin on re-
productive signaling.

In addition to its central effects on GnRH/LH
release, there is a potential for ghrelin to directly
influence pituitary LH and FSH secretion, as it does
for ACTH (). In the mouse pituitary, GHSR is
exclusively expressed in the anterior pituitary, with
higher expression in males than in females, as has
been demonstrated using the GHSR-enhanced
green fluorescent protein mouse model (). The
highest expression of GHSR is evident in somato-
trophs, corresponding with ghrelin’s potent growth
hormone releasing activity. Modest expression of
GHSR-enhanced green fluorescent protein is found
in gonadotrophs and lactotrophs, indicating that
ghrelin can act directly at the pituitary level to
influence LH, FSH, and prolactin secretion (), as
it does for ACTH (). Interestingly, the direct
effects of AG on pituitary gonadotropins are op-
posite to its centrally mediated inhibitory effects,
with an in vitro application of AG on male and
female rat anterior pituitaries dose-dependently
potentiating basal LH and FSH production (,
, ). These direct stimulatory effects are
estrogen-dependent, with an attenuation of these
effects at estrus or after ovariectomy in adult rats, as
well as in neonatally estrogenized females pre-
puberty (, ). Cyclic fluctuations in pituitary
GHSR have also been reported, with decreased
GHSR mRNA expression at estrus and metestrus
(). The involvement of estrogen in the effects of
ghrelin on gonadotropin release is not surprising,
because the majority of GHSR-expressing cells in
the anterior pituitary of both males and females
coexpress ERa (). When AG and GnRH are
added simultaneously to the incubation medium,
the effects of AG appear to be age-dependent. In
adult female rats, AG inhibits GnRH-stimulated LH
release in vitro at all stages of the estrous cycle,
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whereas it potentiates this GnRH-stimulated LH
production by anterior pituitaries of intact and
ovariectomized prepubertal females (, ). In
contrast to these in vitro findings, continuous in-
fusion of AG in men has been shown to inhibit
spontaneous LH pulsatility, as well as the LH re-
sponse to naloxone, but not to a GnRH stimulus
(). Naloxone is an opioid antagonist that acts
centrally to induce gonadotropin secretion ().
Therefore, these results suggest that despite the
ability of AG to directly influence the pituitary
function in vitro, its in vivo effects on the release of
gonadotropins are predominantly centrally mediated.

At least part of ghrelin’s role in fertility is likely
mediated through prolactin. Prolactin is produced by
the lactotrophs in the anterior pituitary (). Besides
its crucial role in the initiation and maintenance of
lactation, prolactin has a wide variety of physiological
roles, including in reproduction, and stress re-
sponsiveness (, ). Prolactin attenuates the ef-
fects of stress, and is thus likely to at least partially
mediate the diminished stress responsivity seen during
pregnancy and lactation, when prolactin levels are
upregulated (, ). Prolactin has been recently
implicated in resilience to the effects of chronic stress
in rats, with those animals that were more resilient to
stress demonstrating higher plasma levels of prolactin
than their more vulnerable counterparts ().
Hyperprolactinemia, however, is known to suppress
GnRH/LH pulsatility (–), and is a major cause
for infertility in males and females (). This is
particularly relevant to our discussion of the effects of
ghrelin on fertility, because exogenous AG has been
shown to stimulate prolactin release in men and
women (, , ), as well as in human pituitary
cells in vitro (), with no effects of DAG on prolactin
levels when administered alone or in combina-
tion with AG (). On the other hand, intra-
cerebroventricular administration of AG in sheep
failed to induce changes in circulating prolactin ().
The effects of AG on prolactin release may also be
dependent on reproductive maturity and cyclicity,
because in prepubertal males and females, as well as in
hyperprolactinemic aged female rats, both systemic
and central administration of AG inhibited prolactin
release, with no changes in prolactin production being
evident when pituitary samples were challenged with
increasing doses of AG in vitro (). Other studies on
primary cultures of female rat pituitary cells have
demonstrated stimulation of prolactin release by
GHSRa agonists [reviewed in ()]. Similarly, cor-
tistatin, a neuropeptide that binds GHSRa, was found
to increase prolactin release in mice, in vivo and in
vitro, and in primary pituitary cell cultures of non-
human primates, an effect that is blocked by GHSRa
antagonists (). In mice, GHSR deletion results in an
important reduction in the mRNA expression of
prolactin and fewer prolactin-positive cells in the

pituitary. These changes are associated with reduced
expression of the pituitary-specific transcription factor
that is essential for differentiation of pituitary cells into
somatotrophs, lactotrophs, and thyrotrophs ().
These data suggest that the effects of AG on the release
of prolactin are likely to be at the level of the pituitary
gland, with potential species and reproductive age-
related differences. Because high prolactin inhibits LH
release (), a stimulatory effect of AG on prolactin
levels may contribute to its inhibitory effects on LH
pulsatility.

The ghrelin system in the gonads

The ghrelin system in the testis
Species-specific mRNA and protein expression of
ghrelin and GHSR have been demonstrated in
mammalian and nonmammalian ovary and testis
[reviewed in (, , ); see Table ]. The GHSR
gene is persistently expressed in rat testis from infancy
to adulthood (), including after selective elimina-
tion of Leydig cells (). On the other hand, specific
GHSR AMRNA and protein expression becomes
detectable only postpuberty in mature nonreplicating
Sertoli and Leydig cells (). In addition, GHSR and
GHSR AMRNA are detected in the seminiferous
epithelium at all stages of the spermatogenic cycle,
with variable expression across the cycle. Specifically,
minimal detection of GHSR and GHSR AMRNA
appears in the rat seminiferous epithelium at stages
VII to VIII (), which are also characterized by the
lowest expression of the FSH receptor and hence lower
sensitivity to FSH (, ). In support of this

Table 2. Distribution of GHSR in Gonads

Ovaries

Ovarian follicles (all developmental
stages)

+

Granulosa cells +

Theca cells +

Luteal cells +

Oocytes 2/+

Testes

Germ cells +

Sertoli cells +

Interstitial tissue (Leydig cells) +

Gonadal data are from sheep; adapted from (237). Gonadal GHSR
expression has been identified in rodents (226, 377, 378), sheep (237),
pigs (379), and humans (228, 229, 380, 381).
Abbreviations: 2/+, detectable expression in some cells; +, some
detectable expression.

445doi: 10.1210/er.2016-1133 https://academic.oup.com/edrv

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article-abstract/38/5/432/4049496 by U
niversity of california san diego user on 11 January 2019

http://dx.doi.org/10.1210/er.2016-1133
https://academic.oup.com/edrv


potential relationship between the expression of
GHSR/GHSRa and FSH responsivity, stimulation of
the testes with FSH in vivo significantly upregulates
total GHSR and specific GHSRa gene expression in
adult rats, with no effect of human chorionic go-
nadotropin treatment that acts as LH superagonist in
vivo or in vitro on the expression of these ghrelin
receptor isoforms (). In addition, in vivo intra-
testicular challenge with AG suppresses proliferation
of differentiating immature Leydig cells, and is asso-
ciated with decreased expression of stem cell factor,
a primary regulator of Leydig cell development. This
inhibitory activity of AG is dependent on FSH sig-
naling, because it is absent in hypophysectomized rats,
but restored upon FSH replacement (). Chronic
systemic administration of AG has also been shown to
induce morphometric alterations and a reduction in
the number and functional capacity of different
spermatocytic cells in adult rats (). In vitro chal-
lenge of rat testicular tissue with AG has been shown
to increase the expression of GHSR and GHSRa
(), and to inhibit human chorionic gonadotropin
and cyclic adenosine monophosphate-stimulated
testosterone secretion (). Zhu et al. () has
demonstrated GHSRa expression in the mouse testis
in steroidogenic Leydig cells, Sertoli cells, as well as in
germ cells, particularly in transcriptionally inactive
elongating/elongated spermatids, indicating that
ghrelin may be involved in spermatogenesis/
spermiogenesis. Indeed, abnormal spermatogenesis
in the testis of leptin deficient ob/ob mice, charac-
terized by arrest at the elongating spermatid stage, is
improved by GHSR antagonist treatment (). In
human testis, GHSRa has also been located in germ
cells, but mainly in meiotic pachytene spermatocytes
(), as well as in Leydig and Sertoli cells (, ).

Ghrelin itself is also expressed in the testis. In rat
testis, the ghrelin gene has been detected at all stages of
development, and ghrelin’s immunolocalization has
been identified in mature fetal and adult Leydig cells
(, ). Ghrelin protein expression in rat testis is
specific to Leydig cells, because it is undetectable after
selective Leydig cell elimination (). Barriero et al.
() has also shown that testicular ghrelin mRNA and
protein expression in rats is dependent on pituitary
LH, with a reduction in ghrelin’s expression after
hypophysectomy, and its partial restoration after
human chorionic gonadotropin replacement. Fur-
thermore, administration of human chorionic go-
nadotropin to intact male rats transiently increases
testicular ghrelin mRNA levels, with no effect of FSH
administration (), contrary to the FSH-dependent
regulation of GHSRa expression and activity (,
). These findings suggest that Sertoli cells, primary
responders to FSH, may not play a role in the regu-
lation of ghrelin expression in rat testis (). Ghrelin
immunostaining is also detected in steroidogenic
Leydig cells in mice, and is significantly increased in

the testis of ob/ob mice that are obese and infertile.
Inhibition of ghrelin signaling in these animals, in
turn, restores steroidogenic activity, reduces germ cell
apoptosis, and improves sperm production ().
Interestingly, however, ghrelin has also been shown to
attenuate testicular dysfunction induced by ionizing
radiation, heat, cadmium, and chemotherapy in mice
and rats (–), potentially due to ghrelin’s anti-
oxidant properties (). In human testis, ghrelin is
strongly present in steroidogenic Leydig and to a lower
extent in Sertoli cells, but is not present in germ cells
(, , ). Ghrelin expression in Leydig cells is
negatively correlated with serum testosterone levels,
suggesting testicular ghrelin is involved in steroido-
genesis (). Moderate protein expression of ghrelin
is also evident in the human rete testis, efferent
ductules, epididymis, vas deferens, seminal vesicles, as
well as in spermatozoa (). Contrary to rodent and
human testis, in adult sheep ghrelin is also detected in
the germ cells, in addition to interstitial (Leydig) and
Sertoli cells, with increased immunoreactivity in the
germ cells prior to the first meiotic division of the
spermatogenic cycle ().

The ghrelin system in the ovary
GHSR AMRNA and protein expression has been
described in pig, sheep, and human ovary (, ,
, ). In human ovary, GHSRa has a wide dis-
tribution, and is immunolocalized to oocytes, cuboidal
granulosa cells, theca cells, hilus interstitial cells, as well
as steroidogenic luteal cells in young, mature, old, and
regressing corpus luteum (). GHSRa is also
expressed in ovarian surface epithelium and in the
ciliated cells within the human fallopian tube epi-
thelium at all phases of the cycle (). In vitro
stimulation of cultured human granulosa-lutein cells
with AG has been shown to inhibit steroidogenesis,
and this effect is prevented by GHSRa, but not
GHSRb antagonism, despite the more abundant
expression of the latter receptor in the granulosa-lutein
cells (). In sheep ovary, GHSRa is similarly
immunolocalized to ovarian follicles at all de-
velopmental stages, with stronger signal in the gran-
ulosa than the theca cells, low levels of detection in the
oocytes, and positive immunostaining in the luteal
cells of the corpus luteum (). GHSRa presence in
the prepubertal porcine follicles was found to mediate
ghrelin’s stimulatory effects on estradiol secretion,
aromatase activity, and cell proliferation. GHSRa
antagonism, however, did not affect ghrelin-induced
suppression of cellular apoptosis suggesting this spe-
cific in vitro effect of ghrelin may be independent of
GHSRa binding (). In rats, chronic in vivo
treatment with AG induced a substantial decrease in
the number of corpora lutea and in the ovarian
volume, but increased the number of ovarian follicles
with a reduced mean diameter (), potentially re-
flective of the effects of AG on cell proliferation and
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apoptosis. Another study in rats has demonstrated that
chronic treatment with AG, DAG, or their combi-
nation during the peripubertal period delays follicular
maturation and results in decreased ovarian weight,
suggesting the inhibitory effects of ghrelin on ovarian
development are only partly dependent on GHSRa
pathways (). These effects of chronic AG treatment
are similar to the deleterious effects of chronic stress
on ovarian apoptosis and oocyte developmental
potential ().

Ovarian ghrelin expression has been demonstrated
in the cytoplasm of the hilus interstitial cells and
granulosa lutein cells in the young and mature corpus
luteum, but is not detected in regressing corpus
luteum, nor is it detected in oocytes or somatic cells of
the ovarian follicles in human ovary (). The ghrelin
gene is also expressed in rat ovary, and its expression
levels depend on the stage of the estrous cycle, with
lowest detection in proestrus and highest expression in
diestrus, during the luteal phase of the cycle. This cyclic
expression of the ghrelin gene has been shown to be
dependent upon gonadotropin signaling, because
administration of GnRH antagonist induces a decrease
in ovarian ghrelin mRNA levels throughout the luteal
phase of the estrous cycle (). Ghrelin immuno-
staining is not detected in growing and preovulatory
follicles, but is strongly detected in the cytoplasm of
steroidogenic luteal cells in corpus luteum of the
current cycle, as well as in regressing corpus luteum
(), a finding that is different to the stage-dependent
localization of ghrelin in the corpus luteum of the
human ovary (). Overall the strong and cycle-
dependent expression of ghrelin in the corpus
luteum suggests ovarian ghrelin may also play a direct
role in the regulation of steroidogenesis, in addition to
ghrelin’s systemic suppressive effects on the HPG axis
function.

Ghrelin’s role in the regulation of puberty
In line with the local and systemic, mostly inhibitory,
effects of ghrelin along the HPG axis, and its role in
metabolism and energy balance, ghrelin has been
shown to play a role in pubertal development. Al-
though the critical role of the metabolic hormone
leptin on puberty onset has been well established, the
role of ghrelin in the regulation of puberty has not yet
been fully elucidated. Few studies have demonstrated
in rats that in contrast to the increased sensitivity of
female puberty to the permissive effects of leptin (),
male puberty appears to be more sensitive to the
effects of ghrelin. Although chronic administration of
low doses of ghrelin induced a delay in the onset of
puberty in male, but not female rats (), only a high
dose of ghrelin was able to induce a similar delay in
vaginal opening females (). These inhibitory effects
on the onset of puberty have been induced by chronic
treatment with both AG and DAG, suggesting
GHSRa-dependent and -independent mechanisms

may be involved (, ). Human data indicate that
circulating total ghrelin levels are significantly in-
creased during early postnatal life and then decline
with age until the end of puberty and early adulthood
(, ). This relationship between the decrease in
ghrelin and advanced pubertal age is more pro-
nounced in boys than in girls, and is also associated
with a negative correlation between ghrelin and
insulinlike growth factor  (). Insulinlike growth
factor  plays an important role in the activation of
GnRH pulsatility at puberty (). These findings
therefore suggest that the decline in circulating ghrelin
levels during the peripubertal period may facilitate
growth and act as a permissive signal on puberty onset.
Additional limited information is available from
studies in boys with constitutional delay of growth and
puberty (CDGP). CDGP is characterized by short
stature, delay in bone maturation, and delayed puberty
(). CDGP is also often associated with substantial
psychological stress (–). Circulating ghrelin in
boys with CDGP is negatively correlated with an-
thropometric parameters, such as body mass index,
height, and weight (, ), as well as testicular
volume, gonadotropins, and testosterone (). It is
important to note, however, that these studies report
total ghrelin levels and do not distinguish between AG
and DAG, which may play independent roles in
human pubertal development. Therefore, further in-
vestigation is required to elucidate the function of the
ghrelin peptides and their mechanisms of action in
male and female puberty.

Ghrelin Signaling in Pregnancy

Ghrelin’s role in fertilization and implantation
Ghrelin and its receptor expression in reproductive
tissues has also been demonstrated in human, rat, and
sheep placentae, endometria, and fallopian tubes (,
), as well as in fetal tissues (, ), indicating its
potential involvement in the course of pregnancy (see
Fig. ). In addition, ghrelin gene expression has been
detected in pregnant rat ovary, with higher expression
in early, than in late gestation ().

Pregnancy begins with successful fertilization and
implantation, and these are highly dependent on
endometrial receptivity (). Several factors, such as
ovarian steroids, cytokines, and neuropeptides, as well
as glucocorticoids, regulate this complex interaction
(–). Glucocorticoids play an important role
throughout pregnancy, and maternal glucocorticoids
are critical for fetal development [reviewed in ()],
but exposure to excess glucocorticoids due to chronic
maternal stress is associated with the development of
metabolic disorders and an increased risk of emotional
and cognitive disturbances in later life [reviewed in
()]. Ghrelin is also likely to be involved in the
maintenance of pregnancy, including the implantation
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process (, , ). In women, ghrelin gene
and protein expression are significantly increased in
decidualized, compared with nonpregnant endome-
trium, whereas GHSR expression is evident in both
cycling and pregnant endometrium (), and is
significantly increased in the midsecretory phase, the
time of implantation (). Interestingly, reduced
midsecretory endometrium expression of ghrelin and
GHSRa, at the stage when implantation is likely to
occur, is associated with reproductive dysfunction and
infertility (). Ghrelin mRNA and immunolocali-
zation is also strongly detected in first trimester human
placenta (, ), with negligible to no expression of
GHSR transcripts in first trimester and at term pla-
centae (, , ). In rat placenta, ghrelin mRNA
detection is minimal during early gestation, peaking at
gestational day , and followed by decreasing ex-
pression at the latest stage of gestation (). Ghrelin
immunolocalization has also been detected in ovine
placentae throughout gestation, with maximal ex-
pression occurring toward mid gestation, as well as
persistent GHSRa immunoexpression, with no effect
of gestational age on its placental levels (). Ghrelin
and GHSR AMRNA and protein levels are also de-
tected in in vitro preimplantation sheep embryos ().
These patterns of expression indicate differences be-
tween species in the pregnancy-related time course of
the ghrelin system expression, likely to reflect species
differences in gestation length and energy demands
().

Ghrelin mRNA expression has been found to be
significantly increased in endometrial stromal cell
coculture with first trimester human placenta, as
compared with endometrial stromal cell primary

culture alone. Moreover, addition of AG to the in-
cubation media increases decidualization of endo-
metrial stromal cells induced by cyclic adenosine
monophosphate in vitro (, ), suggesting ghrelin
may play role in the remodeling of the endometrium
in preparation for pregnancy. Ghrelin immunostain-
ing is also detected in human blastocysts, and ghrelin
levels are present in blastocyst culture medium, sug-
gesting ghrelin is secreted by the blastocysts and may be
involved in the blastocyst–endometrium interaction
(). Low andmedium, but not high doses of AG, have
also been shown to stimulate proliferation and decrease
apoptosis in human choriocarcinoma cell line JEG-,
common processes in placental formation (). AG
can also promote the rate of blastocyst formation in
vitro (, ), but to exert inhibitory effects on the
inner cell mass and trophectoderm cell numbers in
blastocysts, negatively affecting potential embryo via-
bility in sheep and mice (, , ). Corresponding
to the latter inhibitory effects, AG has been shown to
diminish the rate of meiotic maturation of the porcine
oocytes in vitro (). Importantly, the effects of AG on
blastocyst formation and embryo quality are not directly
dose-dependent, with some doses improving and others
inhibiting blastocyst formation rate (). These non-
linear effects of AG may reflect the differences between
the exogenous doses to naturally circulating ghrelin
under basal, overfed, fasting, or stressed conditions
(). Stress conditions, when glucocorticoid and AG
levels are high (, ), have been reported to produce
a negative effect on blastocyst formation and implan-
tation ().

Circulating ghrelin levels fluctuate during the
course of pregnancy, with a substantial increase in AG

Figure 5. Ghrelin and
pregnancy. Early in
pregnancy, ghrelin regulates
decidualization of the
endometrium and
blastocyst–endometrial
interactions. Circulating total
and acylated (AG) ghrelin
levels increase at
midgestation in human
pregnancy, followed by
declining levels during the
peripartum period. Maternal
ghrelin enters fetal
circulation, with both hypo-
and hyperghrelinemia
leading to adverse effects
on neonatal outcomes,
including birth weight,
neurodevelopment, and
fertility. Adapted from Servier
Medical Art under Creative
Commons CC-BY license.
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and total ghrelin levels at midgestation in human
pregnancy compared with nonpregnant women, fol-
lowed by declining levels in the third trimester (,
), as opposed to a peak in total (), AG (), and
DAG () levels toward the end of gestation in rats,
followed by a decline after parturition (). Generally,
circulating AG levels are lower in human pregnancy
than postpartum (), suggesting that AG may
contribute to the adaptation to a positive energy
balance in pregnancy. The decrease in AG cannot be
attributed to its increased deacylation, because the
activity of butyrylcholinesterase, the enzyme that
deacylates circulating ghrelin (), is also significantly
reduced in pregnancy (). The peripartum period is
also associated with stress-hyporesponsiveness, in
humans and nonhuman animals, vital for fetal de-
velopment and for maternal mental health and
wellbeing (–).

Although one study has shown a negative asso-
ciation between circulating and follicular fluid total
ghrelin levels and embryo development (), others
have found no effect of ghrelin on human embryo
quality and pregnancy success (, ). Circulating
total ghrelin levels in early pregnancy have also failed
to predict pregnancy viability in women undergoing in
vitro fertilization procedures (). However, in vivo
studies in rodents have demonstrated the ability of
exogenous ghrelin to interfere with pregnancy success.
In mice, hyperghrelinemia induced by a high dose
of AG, as well as GHSRa antagonism during the peri-
implantation and early gestation periods, led to
adverse effects on pregnancy outcomes, including
diminished fertilization rate, and delayed embryo
development (). Similarly, in rats, chronic ad-
ministration of AG during the first half of gestation
results in reduced litter size at birth (). Therefore,
although variations in fluctuation of ghrelin in preg-
nancy may not be sufficient to predict pregnancy
outcomes, disruption of this natural process may be
detrimental to pregnancy viability and success. Similar
to CRH or glucocorticoid excess, that may contribute
to the risk of early miscarriage (, ), evidence
presented previously suggests that stress-induced
hyperghrelinemia is likely to lead to negative preg-
nancy outcomes. It is important to note that some
studies have not found an association between stress
and/or excess glucocorticoids and pregnancy failure
(, ), thus the causal link between stress-induced
changes in the availability of ghrelin and pregnancy
outcomes need to be assessed in future studies. It is also
important to specifically investigate the acylation status
of circulating ghrelin in its relation to pregnancy, be-
cause some studies provide measures of total ghrelin,
which include both AG and DAG (, , , ).

Ghrelin’s role in fetal development
AG and DAG are present in the fetal circulation, with
decreasing levels of both peptides at the end of

gestation in rats, whereas amniotic levels of DAG
remain high at this time (). Nakahara et al. ()
has also demonstrated that maternal ghrelin (AG)
rapidly crosses the placenta and enters fetal circulation,
and that chronic treatment with AG, but not DAG at
the end of pregnancy significantly and dose-
dependently increases neonatal body weight at birth.
On the other hand, exposure to maternal AG de-
ficiency has been shown to reduce body weight at birth
in rats (), as well as to affect the fertility of the
offspring, leading to abnormal endometrial function
in these animals (). Circulating total ghrelin
levels in term infants negatively correlates with birth
weight and body length. These correlations are
absent in preterm infants (born between  and
 weeks of gestation) (, ). Furthermore, total
ghrelin levels are significantly increased in the
circulation of intrauterine growth-restricted fetuses
(), suggesting that ghrelin may potentially begin
to regulate neonatal growth and metabolism at a late
gestational stage and may play a role in fetal ad-
aptation to an adverse environment.

Ghrelin, GHSRa, GOAT and prohormone
convertase /, that is responsible for the conversion
of proghrelin to ghrelin (), are all expressed in
the human myometrium, indicative of its potential
for autocrine and paracrine effects in this tissue
(). O’Brien et al. () has also shown down-
regulation of ghrelin mRNA and protein expression,
along with a substantial decrease in GHSR, GOAT,
and prohormone convertase / protein expression
during labor. Because ghrelin has been shown to
inhibit human myometrial contractility in vitro
(), this decrease in the myometrial expression of
the ghrelin system at labor may potentially be
necessary to allow successful parturition. This de-
crease in ghrelin expression coincides with stress-
hyporesponsiveness and suppression of the HPA
axis activity at parturition, driven by endogenous
opioids, prolactin, and oxytocin that act together to
suppress stress-responsivity in the peripartum pe-
riod (, , ).

Maternal total ghrelin levels subside immedi-
ately after delivery and are lower in lactating
rats (), and in both breastfeeding and non-
breastfeeding women postpartum (), than in
nonpregnant controls. Another study that assessed
the acylation status of ghrelin in human mothers has
shown that although total ghrelin concentrations
begin to increase between days  to  of lactation,
circulating AG levels continue to decrease ().
Fasting ghrelin levels, that are lower in postpartum
than nonpregnant women, are negatively correlated
with body mass index and fat mass in the mother
(). Interestingly, ghrelin levels in lactating rats do
not appear to be dependent on prolactin and
oxytocin, the hormonal regulators of lactation ().
Administration of dopamine agonist decreases

“We propose that elevated
maternal AG is likely to
influence the reproductive
potential of the offspring.”
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circulating prolactin, and treatment with the do-
pamine antagonist increases prolactin levels, with
no effect on the concentrations of ghrelin. Oxytocin
antagonist has also been shown to inhibit the levels
of oxytocin, without affecting circulating ghrelin
levels (). AG and total ghrelin are also present in
human breast milk (–) and their levels
correlate with circulating ghrelin concentrations in
breastfed infants (, ). Ghrelin mRNA is
present in the mammary gland, suggesting the
source of ghrelin in breast milk may be both the
mammary gland and the circulation (, ).
Similarly, glucocorticoids are present in mother’s
milk, positively correlating with maternal circulat-
ing concentrations, and elevated levels of gluco-
corticoids in the milk have been found to influence
offspring behavioral phenotype, including increased
fear and negative emotionality in human infants and
nonhuman primates (–).

Recent discoveries, including our own, have
identified the role of AG and DAG in fetal and
neonatal development. Both AG and DAG are in-
volved in fetal neurogenesis within the hypothala-
mus and the spinal cord, with the proliferative
effects of AG, but not DAG continuing after birth in
rats (). In the neonatal period, AG regulates
hypothalamic development by limiting the leptin-
induced growth of hypothalamic connectivity ().
Changes to circulating AG and DAG have been
shown in neonatally overfed mice () and rats
(), respectively. These changes are associated
with altered central responsiveness to exogenous
ghrelin, and may in part explain the development of
an obese phenotype in this model (, ). Al-
though the role of ghrelin in human fetal and
neonatal development has not yet been established,
it is highly plausible that maternal ghrelin similarly
influences critical developmental processes in in-
fants. Alterations to ghrelin’s naturally fluctuating
circulating and breast milk levels during the peri-
and postpartum periods may thus differentially
program brain development. In this regard, a study
in pregnant mice has demonstrated that chronic
administration of AG during pregnancy increases
an anxietylike phenotype, basal circulating CRH
and fasting AG levels in adult offspring, along with
a reduction in hypothalamic GHSRa and neuro-
peptide Y gene expression (). Interestingly, the
authors have also demonstrated that exposure to
chronic stress in pregnancy induces an increase in
endogenous maternal AG and DAG, and this effect
is then reflected in increased fetal AG levels ().
These data indicate that maternal ghrelin has a di-
rect effect on the fetus, and these early alterations in
the maternal–fetal ghrelin milieu induce long-
lasting neuroendocrine and behavioral changes in
the offspring. Although fetal development obviously
has complex inputs from many factors additional to

ghrelin and more research is required to establish
the link between maternal AG, DAG, and neuro-
genesis in humans, the findings we presented pre-
viously are consistent with our hypothesis that
stress-induced increases in maternal ghrelin levels
may affect pregnancy success and program fetal and
neonatal development. Because maternal AG can be
transferred to the offspring during the peripartum
period (, , ), and increased AG has mostly
inhibitory effects on the reproductive axis (, ,
, ), we propose that elevated maternal AG is
likely to influence the reproductive potential of the
offspring.

The role of ghrelin in pregnancy-
associated disorders

Clinical perspectives on ghrelin dysregulation in
pregnancy: Who is at risk?
Overweight and obesity significantly increase the risk
of pregnancy complications, including preeclampsia
and gestational diabetes mellitus (GDM). Both AG
and DAG are significantly decreased in obese in-
dividuals (, ) and high-fat feeding in mice has
been shown to induce hypothalamic resistance to
ghrelin (, ) that is reversed by calorie-restricted
diet (). As discussed in more detail in Preeclampsia
and Gestational Diabetes sections, dysregulation of
ghrelin signaling is associated with preeclampsia,
GDM, intrauterine growth-restriction, and other
complications, and is also independently implicated in
adverse pregnancy outcomes. Although the patho-
physiological relationship between metabolic disorders
and pregnancy is well recognized, the influence of
psychological stress and stress-related disorders
on pregnancy outcomes is often overlooked ().
Chronic stress during pregnancy and higher levels of
maternal CRH has been shown to predict preterm
delivery (). Depression and anxiety have been
similarly demonstrated to be important risk factors
for pregnancy loss, preterm delivery, and low birth
weight (–). Chronic stress has also been
suggested to increase the risk of preeclampsia ().
The role of perinatal stress in developmental pro-
gramming of the brain, cognition, and behavior, as
well as in developmental programming of metabolic
dysfunction has also been established [reviewed in
(–)]. As discussed earlier, chronic stress also
contributes to the development of metabolic disor-
ders (), and is associated with elevated ghrelin
levels (, –). Therefore, assessment of AG
and DAG, cortisol, along with body mass index,
blood pressure, glucose tolerance, and other stress
and metabolic biomarkers, may help to predict the
risk of pregnancy complications. Later we present the
existing evidence for the role of ghrelin in pre-
eclampsia and GDM, the common complications of
pregnancy.
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Preeclampsia
Gestational hypertension and preeclampsia affect %
to % of pregnancies, with a higher incidence in first
pregnancies (, ). Preeclampsia is associated with
the risks of intrauterine growth-restriction, preterm
delivery, and perinatal mortality (–). Although
the underlying etiology remains uncertain and likely
involves many contributing factors, obesity is con-
sidered to be a major risk factor for hypertension and
preeclampsia (). Leptin levels are increased in
pregnancy, and are particularly increased in women
with preeclampsia compared with women with
a healthy pregnancy (), and these levels are posi-
tively correlated with body mass index (). In
contrast, total ghrelin levels have been found to be
significantly decreased in pregnant women with
preeclampsia as compared with healthy pregnant
women, and to negatively correlate with blood
pressure (–). This inverse relationship be-
tween circulating ghrelin and blood pressure is also
typically present in nonpregnant healthy and hy-
pertensive individuals, as well as animals with hy-
pertension [reviewed in (, )]. Makino et al.
(), however, has shown that although total ghrelin
levels negatively correlate with blood pressure, these
levels are increased in preeclamptic as compared with
healthy pregnant women. It is important to note the
potential differences in the gestational stage at the
time of ghrelin assessment between the studies, as
well as in the methods of sample analysis and pro-
cessing. Because rapid deacylation of ghrelin occurs
in circulation (), protection of ghrelin from
deacylation upon blood sample collection is essential
to evaluate physiological concentrations of AG and
DAG (, ). Therefore, further investigation into
the specific roles of AG and DAG in preeclampsia is
required.

Psychological stress is also a substantial contributor
to preeclampsia in women (–). Animal studies
have shown chronic stress in pregnancy leads to hy-
pertension accompanied by increased adrenal weight,
as well as an increase in circulating catecholamines,
CRH, and insulin levels in pregnant rats (–).
Increased blood pressure and adrenal weight in the
dam are associated with lower fetal weight and in-
creased fetal adrenal weight and blood pressure (),
similar to changes that occur in human preeclampsia.
The development of preeclampsia in conditions of
chronic distress has been proposed to be mediated
by increased levels of glucocorticoids that are in-
dependently associated with hypertension and endo-
thelial dysfunction, common features of preeclampsia
(). With respect to hypertension and ghrelin levels,
spontaneously hypertensive pregnant rats have sig-
nificantly increased circulating total ghrelin levels
compared with normotensive controls at the last day
of gestation. However, placental expression of the
ghrelin gene is significantly lower in hypertensive than

in normotensive rats (). In contrast, a study using
Dahl salt-sensitive rats as a model of hypertension
and intrauterine growth-restriction, has found that the
levels of placental ghrelin are significantly higher in
Dahl salt-fed pregnant rats than in Dahl pregnant rats
fed a control chow diet (). Although both these
studies indicate a potential for an independent pla-
cental synthesis of ghrelin, the discrepancies in the
direction of change between hypertensive to normo-
tensive pregnancies may be related to specific strain
differences, emphasizing the need for further research
of ghrelin’s role in human pregnancy, particularly in
mediating the deleterious effects of psychological
stress.

Gestational diabetes
Another common complication in pregnancy is
GDM. GDM affects % to % of pregnancies and its
prevalence has significantly increased over the past 
years worldwide (, ) and is a substantial risk
for the development of type  diabetes ().
Overweight and obesity prior to and during preg-
nancy predispose to GDM (, ). GDM exposes
the fetus to maternal hyperglycemia, leading to fetal
macrosomia and hyperinsulinemia (, ). Several
studies in women with GDM have identified an
association with psychological stress and mood dis-
orders (, ); however, the causality of this
direction is not clear, because the diagnosis of
pregnancy complications is itself a stressful experi-
ence. Nevertheless, mood disorders are known to
contribute to hyperinsulinemia and insulin resistance
(, ), and exposure to perinatal stress has been
shown to promote insulin resistance in the offspring
and induce diabetes-related autoimmunity, inde-
pendently of other risk factors (, ), suggesting
psychological stress during pregnancy may contrib-
ute to the development of insulin resistance and
GDM, with long-term developmental implications.
Psychological stress has also been shown to in-
crease the production of inflammatory markers in
pregnant women (), consistent with increased risk
of pregnancy complications, including GDM (,
).

Several studies have assessed the role of ghrelin as
one of several likely players in the development of
GDM, with some inconsistencies regarding the
change of total ghrelin vs specific changes in AG and
DAG in women with GDM. AG has been found to
be decreased (), whereas others found no changes
in AG, but an increase in DAG in women with GDM
both during pregnancy and postpartum (). An-
other study in a small sample of diabetic pregnant
women, using glucose and insulin clamp techniques,
has demonstrated that acute increases in glucose and
insulin do not affect AG, but significantly decrease
circulating DAG levels (), suggesting DAG may
be involved in the regulation of energy balance in

“Prolonged exposure to
increased AG has overall
negative impacts on psycho-
physiological state.”
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GDM. Although no differences have been found in
circulating total ghrelin levels at baseline or after
a glucose load between women with GDM and
pregnant women with normal glucose tolerance
(, ), ghrelin mRNA expression is significantly
increased in the placental tissue of GDM women
(). Interestingly, a follow-up study for a period of
 to  years of  women with GDM has revealed
that .% of the participants developed type  di-
abetes, and low total ghrelin levels at  weeks
postpartum was a substantial risk factor for this
complication ().

Linking Ghrelin Imbalance and Stress in
Reproductive Dysfunction: A Role for an
Endogenous Hormone

The role of ghrelin signaling in PCOS
Our previous discussion has demonstrated that ghrelin
and stress are both intimately and interactively in-
volved in regulating all aspects of reproductive
function, and their interaction typically leads to det-
rimental outcomes (see Fig. ). One of the more
researched reproductive disorders in the context of
ghrelin signaling is PCOS. PCOS is typically charac-
terized by polycystic ovarian morphology, and often
accompanied by insulin resistance, hyperandrogenism,
and chronic anovulation (, ). Women with
PCOS demonstrate increased sympathetic nerve ac-
tivity (), increased sympathetic innervation of the
ovaries (), and an impairment in noradrenaline
reuptake or deamination (). Obesity significantly
increases the risk of PCOS and contributes to other
comorbidities of PCOS, including insulin resistance
(). As previously discussed, both stress and ghrelin
activate the sympathetic nervous system (, ),
contributing to the development of PCOS (, , ,
). Altered cortisol metabolism has also been attributed
to the pathophysiology of PCOS (–).

Total ghrelin levels that are typically reduced in
obese individuals (, , ) are also reduced
in women with PCOS, as has been demonstrated in
several studies (–). There is a further reduction
in ghrelin levels in obese PCOS as compared with lean
PCOS patients (, ), or obese controls (, ).
Some studies, however, have not found these differ-
ences (, ). A negative correlation has been
demonstrated between total ghrelin levels and insulin
in obese women with PCOS (, , ). However,
Schöfl et al. () has found this relationship to be
present only in patients with insulin-sensitive, but not
in patients with insulin-resistant PCOS who displayed
very low fasting ghrelin levels (), similar to obese
insulin-resistant individuals (). Metformin treat-
ment, a common therapy of choice in insulin-resistant
women with PCOS, significantly increases circulating
ghrelin levels (). An inverse correlation between

ghrelin and androgen levels has also been demon-
strated (, , , , ), as well as evidence of
a negative relationship between hirsutism and ghrelin
levels (). Treatment with antiandrogen drugs or
oral contraceptives increases plasma ghrelin (, ).
Although normalization of androgen levels also im-
proves insulin sensitivity, changes in plasma ghrelin
concentrations are mainly dependent on the declining
androgen levels and not on changes in insulin (),
suggesting that androgens may play role in the reg-
ulation of ghrelin production in PCOS. Because in-
creased ghrelin levels typically inhibit LH release (,
, ), it is also possible that lower levels of ghrelin
in patients with PCOS promote hypersecretion of LH,
a characteristic feature of PCOS (), leading to an
increase in ovarian androgen production (). In-
terestingly, one study has examined the psychological
parameters and emotional state in patients with PCOS
and their relation to total ghrelin levels (). Unlike in
other studies, this group has demonstrated that lean
women with PCOS exhibit higher ghrelin levels as
compared with their weight-matched controls (,
), whereas in obese patients with PCOS ghrelin is
reduced (). Moreover, Komarowska et al. () has
shown that lean patients with PCOS exhibit poor
resistance to stress and significantly increased ACTH
levels, compared with obese patients with PCOS, and
that overall anxiety state is positively correlated with
total ghrelin levels in patients with PCOS. These latter
data emphasize the complexity and the heterogeneous
phenotype of this disorder, and the need for further
evaluation of the role that ghrelin may play in regu-
lating both the etiology of PCOS and the patients’
emotional state.

Ghrelin’s role in energy deficiency
and reproduction
Sufficient and adequate energy reserves are required
for reproduction. It is therefore not surprising that
different states of metabolic imbalance, ranging from
energy insufficiency to obesity, often lead to re-
productive dysfunction. As a major orexigenic hor-
mone that regulates energy homeostasis, ghrelin, has
been suggested to mediate the influences of altered
nutritional states on reproductive health (). Al-
though circulating ghrelin levels are decreased in obese
patients and increased in patients with anorexia
nervosa (), both conditions contribute to ghrelin
resistance ().

As we discussed previously, obesity is an important
contributing risk factor to the development of PCOS,
as well as to the development of pregnancy compli-
cations. Anorexia nervosa is also associated with re-
productive issues, such as amenorrhea (). Although
despite menstrual irregularities women with anorexia
nervosa may become pregnant, the physiological and
psychological demands of pregnancy and motherhood
present a substantial challenge for women who
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struggle with anorexia (). Animal models of un-
dernutrition have also shown a decrease in the ex-
pression of hypothalamic kisspeptin and delayed
puberty onset (), as well as a diminished ovarian
reserve, when an exposure to suboptimal nutritional
environment occurs early in life (, ).

Ghrelin levels are increased in women with an-
orexia nervosa and exercise-induced amenorrhea (,
, ). In both anorexia and obesity, ghrelin levels
are inversely correlated with body mass index (,
, ). Therefore, increased ghrelin levels in the

state of chronic energy deficiency may act as a com-
pensatory mechanism in an attempt to increase food
intake and normalize energy homeostasis, as well as to
inhibit HPG axis signaling, both centrally and pe-
ripherally, until energy reserves are restored.

In rats, food deprivation has also been shown to
be associated with increased noradrenergic release in
the PVN and elevated plasma ACTH levels, whereas
intracerebroventricular administration of AG fur-
ther enhanced these effects (). These findings further
support the role of ghrelin inmediating neuroendocrine

Figure 6. Ghrelin regulates the effects of stress on fertility. Exposure to stress involves the coordinated interaction between the
sympathomedullary system, the HPA axis, the HPG axis, and the ghrelin system. Ghrelin regulates the stress response by acting
indirectly on CRH neurons in the PVN and directly at the anterior pituitary gland to facilitate ACTH release. Ghrelin also binds to
catecholaminergic neurons in locus coeruleus (LC) increasing noradrenaline production, and further influencing the HPA axis. The
increased HPA axis and sympathetic activity exert negative effects along the HPG axis. Ghrelin has also an inhibitory and indirect effect
on kisspeptin-stimulated LH release, and is able to act directly at the level of the pituitary influencing gonadotropin secretion. Within
the ovary and the testis, ghrelin has predominantly an inhibitory effect on steroidogenesis. Adapted from Servier Medical Art under
Creative Commons CC-BY license.
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responses to stress, and suggest that increased ghrelin
levels in the state of energy deficiency enhance stress
responsivity. Psychological stress, in turn, induces an
increase in circulating ghrelin, specifically in AG, but
not DAG, and this increase has been shown to have
both anxiolytic and anxiogenic effects [reviewed in
()]. These differences are likely to be related to the
duration of stress (, ). AG release in situations of
acute stress is likely to play an adaptive role, helping an
individual to cope with stress (). However, pro-
longed exposure to increased AG has overall negative
impacts on psycho-physiological state (, , ,
), and as we propose herein, this stress-induced
increase in AG is detrimental to reproductive function.

Ghrelin’s role in stress-induced
reproductive dysfunction
As has been demonstrated with ghr2/2 animals and
with cases of infertility despite normal ghrelin activity,
ghrelin is not strictly necessary (under nonstressed
conditions) nor sufficient for reproduction. However,
ghrelin modulates the stress response at almost all
levels of the HPA and SAM axes, strongly influences
reward, and is also an important player in successful
functioning of the HPG axis, ovarian follicle matu-
ration, and spermatogenesis. We therefore conclude
ghrelin plays a substantial role linking stress with
infertility.

The evidence we presented previously describes
ghrelin’s role in integrating stress responsivity, as well
as its regulatory role in reproductive function. The role
of ghrelin signaling in both of these neuroendocrine
systems is undoubtedly complex and is intertwined
with its role in energy homeostasis. Interestingly, al-
though the hypothalamus is the main site of ghrelin’s
metabolic, stress-related, and reproductive actions,
these effects appear to be regionally dissociated. Both
the arcuate nucleus and PVN mediate the orexigenic
effects of centrally administered AG (, , ),
and these regions are also responsive to its anxiogenic
effects (). However, although intact arcuate nucleus
signaling is essential for the metabolic actions of pe-
ripheral ghrelin (, ), ghrelin-induced activation
of PVN CRH neurons is independent of the arcuate
nucleus (, , , ). CRH neuronal signaling
is also implicated in the central reproductive actions of
ghrelin, because CRH antagonist has been shown to
prevent the inhibitory effects of AG on LH pulsatility
in nonhuman primates (). However, because
PVN CRH neurons are not directly involved in the
suppression of LH pulsatility (, , ), these
CRH-mediated effects of AG are likely be conveyed by
CRH-GnRH connectivity in the mPOA (), where
AG exerts inhibitory (indirect) effects on Kiss neu-
rons (). In the periphery, administration of AG
induces an increase in ACTH and glucocorticoid levels
in animals and humans (–), and these inhibit
reproductive function at all sites of the reproductive

axis as we have discussed. It is therefore plausible that
in response to stress, both AG and HPA axis hor-
mones act synergistically to suppress reproduction. It
is important to incorporate in this regard the role of
ghrelin in reward, including in the rewarding aspects
of mating. Acutely AG has been demonstrated to
enhance sexual motivation and behavior in male mice
(, ). However, in female mice, chronic calorie
restriction, typically associated with increased AG,
reduces sexual receptivity and this is reversed by
administration of the GHSR antagonist (), sug-
gesting that persistent elevation of AG induced by
chronic stress may also inhibit sexual motivation and
behavior.

The ghrelin system is also critically involved in the
regulation of pregnancy and fetal development, and
although the evidence is limited, it appears that in-
creased levels of AG, including those induced by
chronic stress, can be transferred to the fetus,
programming an anxietylike phenotype in the off-
spring (). Ghrelin deficiency during pregnancy,
however, also produces detrimental developmental
outcomes (), suggesting that balanced ghrelin
levels are required to maintain healthy pregnancy
and improve fetal outcomes. Altered levels of
ghrelin have also been associated with complica-
tions of pregnancy and other reproductive disorders
in humans [reviewed in (, )], and although
further research using experimental conditions that
induce alterations in ghrelin levels is required, we
propose that chronic stress may significantly con-
tribute to these reproductive disorders, via an im-
balance in the availability of ghrelin.

Current Limitations and Future Directions

It is important to note that although the evidence that
we presented in this review strongly supports our
hypothesis that stress negatively impacts fertility and
pregnancy by stimulating dysregulation in ghrelin
signaling, a direct role for ghrelin as a mediator be-
tween stress and fertility has not yet been shown.
Therefore, much remains to be elucidated in regards to
the mechanisms involved in the integration of stress,
ghrelin, and reproductive function, and with respect to
potential therapeutic implications of these discoveries.

Future experiments addressing this role will need
to be mindful of the potentially independent, com-
plementary, and antagonistic role of AG and DAG, as
indicated by the research looking into the distinct roles
of AG and DAG in metabolism (, –),
neuroprotection, and cerebrovascular function (,
, , ), as well as stress and anxiety (, ).
Unfortunately, the vast majority of studies in-
vestigating the role of ghrelin in reproduction that we
have presented in this review do not specify the ac-
ylation status of ghrelin.
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Future studies will also need to assess the potential
for commercially available pharmacological compounds
targeting the availability of AG and DAG to remedy
stress-induced infertility. Encouragingly, recently de-
veloped bioactive DAG analog, AZP- (Alizé Pharma,
France), is a potent inhibitor of circulating AG (,
). This compound is currently undergoing clinical
trials in patients with type  diabetes and in patients with
Prader-Willi syndrome, who suffer from elevated AG
and dysregulation of the ghrelin system. Thus far, AZP-
 has been shown to be safe, well tolerated, and its

improved pharmacokinetic profile differentiates it from
existing ghrelin antagonists (). This compound may
therefore provide a useful therapeutic in the context
chronic stress-induced infertility. However, due to the
involvement of ghrelin in multiple functions, exten-
sive research is required to address the possibility of
safely utilizing this compound in improving fertility.
Nonetheless, the clear evidence of ghrelin’s role in
stress and fertility suggest targeting its action may
provide a useful therapeutic to remedy infertility in
some stress-susceptible couples.
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Ingerslev HJ, Zachariae R. Efficacy of psychosocial
interventions for psychological and pregnancy
outcomes in infertile women and men: a systematic
review and meta-analysis. BMJ Open. 2015;5(1):
e006592.

36. Lintsen AM, Verhaak CM, Eijkemans MJ, Smeenk
JM, Braat DD. Anxiety and depression have no
influence on the cancellation and pregnancy rates
of a first IVF or ICSI treatment. Hum Reprod. 2009;
24(5):1092–1098.

37. Nouri K, Litschauer B, Huber JC, Buerkle B, Tiringer D,
Tempfer CB. Saliva cortisol levels and subjective

455doi: 10.1210/er.2016-1133 https://academic.oup.com/edrv

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article-abstract/38/5/432/4049496 by U
niversity of california san diego user on 11 January 2019

http://dx.doi.org/10.1210/er.2016-1133
https://academic.oup.com/edrv


stress are not associated with number of oocytes
after controlled ovarian hyperstimulation in pa-
tients undergoing in vitro fertilization. Fertil Steril.
2011;96(1):69–72.

38. Hjollund NH, Bonde JP, Henriksen TB, Giwercman
A, Olsen J; Danish First Pregnancy Planner Study
Team. Reproductive effects of male psychologic
stress. Epidemiology. 2004;15(1):21–27.

39. Campagne DM. Should fertilization treatment start
with reducing stress? Hum Reprod. 2006;21(7):
1651–1658.

40. Quant HS, Zapantis A, Nihsen M, Bevilacqua K,
Jindal S, Pal L. Reproductive implications of psy-
chological distress for couples undergoing IVF.
J Assist Reprod Genet. 2013;30(11):1451–1458.

41. Turner K, Reynolds-May MF, Zitek EM, Tisdale RL,
Carlisle AB, Westphal LM. Stress and anxiety scores
in first and repeat IVF cycles: a pilot study. PLoS One.
2013;8(5):e63743.

42. Olivius C, Friden B, Borg G, Bergh C. Why do couples
discontinue in vitro fertilization treatment? A co-
hort study. Fertil Steril. 2004;81(2):258–261.

43. Smeenk JM, Verhaak CM, Stolwijk AM, Kremer JA,
Braat DD. Reasons for dropout in an in vitro
fertilization/intracytoplasmic sperm injection pro-
gram. Fertil Steril. 2004;81(2):262–268.

44. RajkhowaM, McConnell A, Thomas GE. Reasons for
discontinuation of IVF treatment: a questionnaire
study. Hum Reprod. 2006;21(2):358–363.

45. Maheshwari A, Hamilton M, Bhattacharya S. Effect
of female age on the diagnostic categories of in-
fertility. Hum Reprod. 2008;23(3):538–542.

46. Demyttenaere K, Nijs P, Evers-Kiebooms G,
Koninckx PR. Coping and the ineffectiveness of
coping influence the outcome of in vitro fertil-
ization through stress responses. Psychoneur-
oendocrinology. 1992;17(6):655–665.

47. Thiering P, Beaurepaire J, Jones M, Saunders D,
Tennant C. Mood state as a predictor of treatment
outcome after in vitro fertilization/embryo transfer
technology (IVF/ET). J Psychosom Res. 1993;37(5):
481–491.

48. Smeenk JM, Verhaak CM, Eugster A, van Minnen A,
Zielhuis GA, Braat DD. The effect of anxiety and
depression on the outcome of in-vitro fertilization.
Hum Reprod. 2001;16(7):1420–1423.

49. Verhaak CM, Smeenk JM, Eugster A, van Minnen A,
Kremer JA, Kraaimaat FW. Stress and marital sat-
isfaction among women before and after their first
cycle of in vitro fertilization and intracytoplasmic
sperm injection. Fertil Steril. 2001;76(3):525–531.

50. Eugster A, Vingerhoets AJ, van Heck GL, Merkus JM.
The effect of episodic anxiety on an in vitro fer-
tilization and intracytoplasmic sperm injection
treatment outcome: a pilot study. J Psychosom
Obstet Gynaecol. 2004;25(1):57–65.

51. Merari D, Feldberg D, Elizur A, Goldman J, Modan B.
Psychological and hormonal changes in the course
of in vitro fertilization. J Assist Reprod Genet. 1992;
9(2):161–169.

52. Boivin J, Takefman JE. Stress level across stages
of in vitro fertilization in subsequently pregnant
and nonpregnant women. Fertil Steril. 1995;64(4):
802–810.

53. Anderheim L, Holter H, Bergh C, Möller A. Does
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